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We investigate the contribution made by Raman scattering to the formation of molecular

hydrogen in astrophysical environments characteristic of the early stages of the evolution

of the universe. In the Raman process that we study, a photon is scattered by a pair of

colliding hydrogen atoms leaving a hydrogen molecule that is stabilized by the transfer of

kinetic and binding energy to the photon. We use a formulation for calculating the photon

scattering cross section in which an infinite sum of matrix elements over rovibrational

levels of dipole accessible electronic states is replaced by a single matrix element of a

Green’s function. We evaluate this matrix element by using a discrete variable

representation.

1. Introduction

The formation of molecules was an important event in the evolution of the early universe. The
chemistry and formation of molecules in the early universe have been reviewed recently by Lepp et
al.,1 Dalgarno,2 and Galli and Palla.3 The presence of molecular hydrogen is believed to have played
an important role in the early cosmological structure formation.4

The mechanisms that have been explored for the formation of molecular hydrogen are the
reaction sequences initiated by the radiative association of H1 and He and H1 and H and the direct
formation of H2 by associative detachment in collisions of H� and H and the radiative association
of ground and excited hydrogen atoms. In this paper we focus on the formation of hydrogen
molecules from hydrogen atoms. Symmetry arguments show that direct association of a pair of
ground state hydrogen atoms to form a hydrogen molecule which is stabilised by the emission of a
photon is not possible; the symmetry is broken for a collision of a hydrogen atom and a deuterium
atom and direct association can proceed slowly.3,5,6 We investigate the possibility that a contribu-
tion to the formation of molecular hydrogen in astrophysical environments arises from Raman
scattering of photons where a transition occurs from a point in the vibrational continuum of the
ground electronic state, X 1Sþg , of molecular hydrogen (that describes a pair of colliding hydrogen
atoms) to a bound vibrational level of the X 1Sþg state; the excess energy (kinetic and binding) is
removed by the scattered photons. When the incident photon has a large wavelength, the scattering
cross section and corresponding rate of association for the production of molecular hydrogen can
be calculated from the polarizability of the hydrogen molecule.7,8 However, at wavelengths close to
and smaller than Lyman a, resonant excitation of the bound rovibrational levels of dipole accessible
excited electronic states of the molecule enhances the cross sections and association rates.8
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2. Theory

The Raman association process involves the inelastic scattering, from energy �ho to �hosc, of
electromagnetic radiation by a pair of hydrogen atoms colliding on the X 1Sþg ground state surface
of molecular hydrogen:

H þ H þ �ho - H2 þ �hosc. (1)

The cross section in cm2 J�1 associated with this process is given by:

sfiðoÞ ¼
8pa2oo3

sc

9c2e4
SfiðoÞ; ð2Þ

where a is the fine-structure constant, c is the speed of light and e is the electronic charge. In eqn (2)
the Raman scattering matrix Sfi(o) is given by the Kramers–Heisenberg equation:9

SfiðoÞ ¼
X
st

X
m

hf j m̂s jmihmj m̂t jii
omi � oþ iGm=2

þ hf j m̂s jmihmj m̂t jii
omi þ o

�����
�����
2

; ð3Þ

where the coherent sum is over all the intermediate states |mi, omi = oi � om, Gm is the inverse
lifetime of the intermediate state |mi and m̂s and m̂t are components of the dipole moment operator.
In the calculation of Federman and Frommhold8 the sum over intermediate states in eqn (3) was
evaluated explicitly but only partially. The sum may be evaluated implicitly in terms of dipole
response functions10–15 which may be expressed in terms of Green’s functions.13,14 We discuss below
a method to evaluate the matrix elements of the Green’s functions. The first term in eqn (3) can give
rise to resonances where the second term can be neglected. In the off-resonant case, where omi c o,
the scattering matrix is given by the polarizability theory of Placzek and Teller7 as

SPT
fi ðoÞ ¼

1

9
jhf jak þ 2a?jiij2dJ 00J 0 þ BJ 00

J 0 jhf jak � a?jiij2; ð4Þ

where a8 and a> are the parallel and perpendicular components, respectively, of the polarizability of
a hydrogen molecule in its ground state, and BJ00

J0 depends on the initial and final rotational quantum
numbers (J00 and J0, respectively) of the system

BJ 00
J 0 ¼

3
2

J 00ðJ 00�1Þ
ð2J 00�1Þð2J 00þ1Þ J 0 ¼ J 00 � 2
J 00ðJ 00þ1Þ

ð2J 00�1Þð2J 00þ3Þ J 0 ¼ J 00

3
2
ðJ 00þ1ÞðJ 00þ2Þ
ð2J 00þ1Þð2J 00þ3Þ J 0 ¼ J 00 þ 2:

8>><
>>:

ð5Þ

We apply the usual Born–Oppenheimer approximation and we represent the wave functions in eqn
(3) in the Hund’s case (a) basis {jcJMJ

ðaÞp i} as

jcJMJ

ðaÞp i ¼
1þ ð�1Þpîffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2dL0dS0
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
½J�=4p

p
D
ðJÞ�
MJO
ða; b; 0Þjv; nLSSi; ð6Þ

where L, S, S, and O are the usual Hund’s case (a) quantum numbers, p denotes parity, ı̂ is the
parity operator, n is the electronic primary quantum number,

ffiffiffiffiffiffiffiffiffiffiffiffiffi
½J�=4p

p
D
ðJÞ�
MJO
ða; b; 0Þ is a two-angle

normalized Wigner D function, and v the vibrational quantum number, which is replaced by the
kinetic energy E for continuum states. We use the parity convention defined by van Vroonhoven
and Groenenboom.16 We denote 2J þ 1 by [J] throughout.
Neglecting the second term in eqn (3) and integrating over the angular variables we find that the

rotationally resolved scattering matrix for relative collision energies E00 in the parity-unadapted
basis can be written as

SJ 0v0O0;J 00E00O00 ðoÞ ¼
1

½J 00�
X

MJ00MJ0

X
JO

S
J 00MJ00O

00

J 0MJ0O
0 ðJOÞME00J 00O00

v0J 0O0 ðJOÞ
�����

�����
2

: ð7Þ

The angular factor S is given by
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S
J 00MJ00O

00

J 0MJ0O
0 ðJOÞ ¼ ð�1ÞJþOþJ

0�MJ0 þJ�MJ ½J�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½J 0�½J 00�

p X
MJ

J 0 1 J

�MJ 0 0 MJ

� �

�
J 1 J 00

�MJ 0 MJ 00

� �
J 0 1 J

0 �O O

� �
J 1 J 00

�O O 0

� �
;

where we used the fact that in the X 1Sþg state we have O0 = O00 = 0.
The angular factor predicts electronic and rotational selection rules for the Raman association

process, schematically represented in Fig. 1; the selection rules also reduce the number of candidates
in the coherent sum over intermediate states in eqn (3). In Raman association, the system starts in
the continuum of levels with rotational quantum number J00 of the X 1Sþg ground electronic state
and finishes as a bound level, with rotational quantum number J00 or J00 � 2, of the X 1Sþg electronic
state; transitions to final levels with rotational quantum number J00 � 1 are forbidden. Fig. 1
signifies that the only allowed intermediate states in eqn (3) are levels of electronic states of 1Sþu and
1Pu symmetries, and that the rotational quantum numbers are restricted to J00 � 1 for the 1Sþu
intermediate levels and J00 and J00 � 1 for the 1Pu intermediate levels. The dynamical partM is given
by:

ME00J 00O00
v0J 0O0 ðJOÞ ¼ �h

X
n

hv0; J 0n0O0j d̂�O ĜnJO d̂O jE00; J 00n00O00ir; ð9Þ

where integration is over the nuclear coordinate r, the d̂x are the relevant components of the body-
fixed dipole operator given by m̂s ¼

P
x d̂x D

ð1Þ�
sx ða; b; 0Þ, and Ĝ is the Green operator associated with

the Schrödinger equation for nuclear motion in the adiabatic Born–Oppenheimer hydrogen atom r-
dependent potential, VnO(r), of the relevant electronic intermediate state

ĜnJOðoÞ ¼ E00 þ �ho� ��h2

2mr
d2

dr2
rþ VnOðrÞ þ

f OðJÞ
2mr2

� �
þ iG=2

� ��1
; ð10Þ

where r is the nuclear separation, m is the reduced mass for the motion and

f OðJÞ ¼ JðJ þ 1Þ O ¼ 0
JðJ þ 1Þ � 1 jOj ¼ 1:

�
ð11Þ

Here we have neglected terms in the Hamiltonian that couple different electronic states.
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55Fig. 1 The possible pathways for rotational changes in Raman association. The path J- J- J is not possible
for 1Sþu intermediate states.
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In practice, the infinite sum over electronic states in eqn (3) is truncated so as not to include any
contributions from distant electronic states. However the contribution of distant electronic states to
the scattering matrix can be considered to be independent of o.15 We write

Sfi(o) = SKH
fi (o) þ Scorr

fi , (12)

where SKH
fi is the scattering matrix element obtained when the sum in eqn (3) is truncated and Scorr

fi is
a constant correction term that accounts for the distant states’ contribution which can be estimated
by examining scattering matrix elements in the off-resonance region, where the Placzek–Teller
approximation holds. The correction is

Scorr
fi = SPT

fi (o) � SKH
fi (o) o { omi, (13)

where SPT
fi is expressed in terms of the polarizabilities, a> and a8, by eqn (4) and the calculation of

the polarizabilities includes all intermediate electronic states. We evaluate the correction from eqn
(13) with SPT

fi (o) and SKH
fi (o) computed at energy �ho = 2.401 � 104 cm�1.

In the calculation by Federman and Frommold,8 the term a8 þ 2a> of eqn (4) was replaced by a8
þ 2a> � 6a0, where a0 is the polarizability of the hydrogen atom. Similarly, the r-dependent dipole
transition moments d(r) were replaced by d(r) � d(N). However, since nuclear eigenstates on the
X 1Sþg electronic surface are orthogonal, the extra term hf|a0|ii, arising from the subtraction,
vanishes and is therefore unnecessary for rovibrational Raman scattering.

3. Numerical methods

The central part of our calculation is the evaluation of eqn (13). We choose a grid-based
representation. The nuclear Hamiltonian matrix and final nuclear bound states are represented
using the sinc-function discrete variable representation (sinc-DVR).17 The numerical initial state
nuclear wave functions are obtained by using the renormalized Numerov method to propagate them
on the X 1Sþg potential energy curve and then matching them to scattering boundary conditions. We
restrict the sum over intermediate electronic states to a sum over 6 optically allowed states; 3 are of
1Sþu symmetry and 3 are of 1Pu symmetry (see Fig. 2). The ab initio potential energy curves and
electronic dipole transition moments are taken from calculations by Wolniewicz and Staszewska.18–
21 We use the vibrationally resolved lifetimes from the work by Fantz and Wünderlich22 to estimate
the inverse lifetime Gm of each intermediate state. In the case where E00 þ �ho> VnO(r-N), that is,
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double well structure.
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where the sum of the initial state energy and the energy of the incoming photon exceeds the
dissociation limit of an intermediate electronic state, we use the Green function absorbing boundary
condition (ABC) method23–25 to prevent the matrix in eqn (10) from becoming singular. The ABC
method consists of replacing the constant ½Gm by an r-dependent function g(r), thus effectively
augmenting the potential VnO(r) with a negative imaginary potential which absorbs the wave
function in the physically non-relevant outer region. Here we choose the Woods–Saxon potential

gðrÞ ¼ 2l
1þ expðrmax � rÞ=Z ; ð14Þ

where l and rmax values are chosen such that sufficient absorption takes place and Z is chosen to be
small enough to ensure that no significant reflection occurs.
The main computational task is to solve the linear systems of equations associated with the

representation of the term ĜnJOd̂O|E
00; J00n00Oi in eqn (9). Since the potential energy curves of

intermediate electronic states have different r-dependences, we save computational time by adapting
the grid and minimizing the number of basis functions for each intermediate state. That is, we keep
the grid spacing constant and minimize the range of the grid. The linear systems can then be solved
on each grid separately, and the solutions projected so that the inner product with the final state hv;
J0n0O0|d̂�O can be taken. Table 1 shows the different grids used in this work. At these resonances the
matrix in eqn (10) is singular and we represent the term ĜnJOd̂O|E

00; J00n00Oi in eqn (9) by wv
nJO(r)hv;

nJO|dO|E00; n00J00O00i/(iGm/2), where wv
nJO(r) is the rovibrational nuclear wave function associated

with the resonance. Inspection of the resonances shows that the two methods of calculation are
consistent with each other.
The Raman association cross section is computed for a grid of photon frequencies. Because the

cross section is very sharply peaked around resonances we do not use a grid that is linear in photon
energy �ho but choose instead a grid that is logarithmically spaced around each resonance. The grid
is cut off at 13.6 eV. Extensive experimentation showed that choosing 50 logarithmically spaced
points around every resonance while leaving out redundant points gives a satisfactory description of
the spectral features. In total there are about 350 rovibrational resonances in each spectrum
depending on the initial rotational quantum number, yielding about 12 300 points on average to be
computed per spectrum.
For comparison we compute cross sections according to the theory of Placzek and Teller. The

matrix elements in eqn (4) are evaluated using the r-dependent polarizability of molecular hydrogen
in the ground state computed by Wolniewicz.21 The initial (scattering) and final (bound) states are
evaluated on the grid as described above.

4. Results

Fig. 3 shows the total Raman association cross section as a function of photon energy for two
hydrogen atoms, colliding at an energy of E = 0.448 eV. The cross section shown is computed with
the truncated Kramers–Heisenberg equation, and the corrections from eqn (12) and (13) are
applied. The (initial) rotational quantum number is J00=6; this is appropriate to the most abundant
rotational state in the early universe at a matter and radiation temperature of about 4000 K. The
bars show where rovibrational resonances of the various intermediate states occur. The cross
section increases smoothly with photon energy, until the resonance region is reached. At higher
photon energies, in the resonance region, the cross section increases significantly. The off-resonance
background cross section increases by about four orders of magnitude compared with the low
photon energy region. At a resonance, the cross section may be five to ten orders of magnitude
larger than the background cross section. At about 78 770 cm�1 the cross section in this spectrum
decreases rapidly. The reason is that at these photon energies the second dissociation continuum of
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Table 1 Number of grid points used for each intermediate state potential. The grid points are given by 0.2, 0.3,

. . . , 0.2 þ 0.1N

X1Sþg B 1Sþu B0 1Sþu B00 1Sþu C 1Pu D 1Pu D0 1Pu

N 118 198 198 398 118 198 398
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the B 1Sþu , B0
1Sþu , and C 1Pu states is reached, and there are not many bound state resonances in

this energy region. At higher energies the number of resonances, and thus the cross section,
increases significantly again. The sharp cutoff at 93 950 cm�1 occurs where the sum of the photon
energy and the collision energy exceeds the dissociation limit of the B00 1Sþu , D

1Pu, and D0 1Pu

states.
In Fig. 4 we show the resonances associated with intermediate states, specifically the v= 0, J=5,

and v= 0, J= 7 levels of the B 1Sþu electronic state; absence of a resonance at the v= 0, J= 6 level
is consistent with the selection rules depicted in Fig. 1. The dashed lines indicate the cross sections,
sJ0’J00 � Sv0sv0J0;E00J00, associated with transitions from an initial state whose rotational quantum
number is J00= 6 in the X 1Sþg continuum to the various final rovibrational levels of the X 1Sþg state.
In the s6’6 cross section we find the two resonances at the v = 0, J = 5 and v = 0, J = 7 levels of
the B 1Sþu state, showing the contributions via the two paths for the intermediate 1Sþu electronic state
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Fig. 3 Raman association cross section for hydrogen atoms colliding with a relative collision energy of 0.448 eV
with J00 = 6. The bars indicate where rovibrational resonances of the indicated electronic states are found.

Fig. 4 Raman association cross sections at the resonances associated with the B 1Sþu (v = 0), J = 5 and J = 7
states. The dashed lines indicate the cross sections for the J0 = 4’J00 = 6, J0 = 6 ’ J00 and J0 = 8 ’ J00= 6
transitions, respectively.
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depicted in Fig. 1. We find one resonance in each of the s4’6 and s8’6 cross sections associated,
respectively, with the v = 0, J = 5 and v = 0, J = 7 levels of the B 1Sþu state.
We also calculated the vibrationally resolved cross sections SJ0sv0J0’ E00J00. In Fig. 5 the relative

vibrational distributions at different photon scattering energies, �ho, are compared. The black bars
indicate results obtained with the Kramers–Heisenberg formula, eqn (3), and the white bars indicate
results obtained from the Placzek–Teller approximation. The photon angular frequencies are
presented relative to the position of the angular frequency, denoted o0, of the B 1Sþu (v = 0, J =
5) resonance. In the off-resonance region, where o � o0 is equivalent to an energy shift from
resonance of about �40 265 cm�1 (and �ho = 2.401 � 104 cm�1), the vibrational distributions
predicted by the Kramers–Heisenberg formula and the Placzek–Teller approximation are very
similar although the total cross sections differ significantly; the higher lying vibrational levels (with
vibrational quantum number v = 10–13) are populated preferentially. When the photon energy
increases to about 2.2 cm�1 below the resonance, the distribution predicted by the Kramers–
Heisenberg equation starts to differ from the Placzek–Teller distribution; within 2.2 cm�1 of the
resonance a significant number of lower-lying vibrational states, mainly with v = 1–7, become
populated while the vibrational distribution predicted by the Placzek–Teller approximation remains
largely unaltered. At the resonance, the Kramers–Heisenberg equation predicts no significant
population of the levels with v= 10–14. The distribution is completely different from that predicted
by the Placzek–Teller approximation which fails to take proper account of the resonance
contributions. The distribution predicted by the Kramers–Heisenberg equation is similar to that
obtained from consideration of spontaneous or stimulated emission from the B 1Sþu (v = 0, J = 1)
state to the ground state levels.

5. Conclusion and outlook

We pointed out that molecular hydrogen may be formed by Raman scattering by a pair of hydrogen
atoms colliding in the X 1Sþg state and we presented a method for the accurate evaluation of the
Raman cross sections in a radiation field. We carried out a direct evaluation of the Kramers–
Heisenberg equation via a Green operator formalism. We used a grid-based representation. We
presented the first full calculation of photon-energy dependent Raman association cross sections
including all rovibrational resonances associated with the intermediate states, based on the accurate
electronic potential energy surfaces and properties computed by Wolniewicz and Staszewska.18–21

We compared the exact results with those of the Placzek–Teller approximation and we showed that
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Fig. 5 Relative yield of X 1Sþg vibrational states upon Raman association of H atoms, colliding with a relative
collision energy of 0.448 eV and J00 = 6 as a function of photon angular frequency o. Here, o0 is the frequency
associated with the B 1Sþu (v = 0, J = 5) resonance.
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final state vibrational distributions obtained with the Placzek–Teller approximation and with the
Kramers–Heisenberg expression are comparable except in the region of the resonances where they
differ significantly. Future work will include thermal averaging over the collision energies of
hydrogen atom pairs and calculations of Raman association rate constants with application to the
formation of molecular hydrogen in astrophysical environments.
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