Erratum: "Theoretical transition probabilities for the OH Meinel system" [J. Chem. Phys. 126, 114314 (2007)]

Mark P. J. van der Loo and Gerrit C. Groenenboom^{a)} Theoretical Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen,

Toernooiveld 1, 6525ED, Nijmegen, The Netherlands

(Received 25 February 2008; accepted 26 February 2008; published online 18 April 2008)

[DOI: 10.1063/1.2899016]

We recently discovered errors in our code for calculating the OH Meinel transitions which was used in calculations for two recent works.^{1,2}

The weak $F_1 \leftarrow F_2$ and $F_2 \leftarrow F_1$ transitions of OH in the $X^2 \Pi(v, J, p)$ states were neglected, yielding a difference in total lifetimes of OH $X^2 \Pi(v=1, J=3/2, F_1, p)$ states of about 2.5% or 1.4 ms. Furthermore, we found a phase difference in the basis sets used to implement the rotational Hamiltonian of Eq. (2) and the lambda-doubling Hamiltonian of Eqs. (8)–(10). Finally, we found an inconsistency in the implementation of the spin-orbit Hamiltonian. The equations in the paper are consistent.

In the new calculations we also replace the $r_e = 1.8342a_0$ value by a more recent value³ of $r_e = 1.8324a_0$.

The new calculations affect the numbers in Tables IV and V, which are reproduced here in Tables I and II. Our electric dipole moment function yields slightly higher values for the expectation values of the dipole moment than

TABLE I. Computed and experimental vibrationally averaged dipole moments of OH in ea_0 .

v	Exp. ^a	Present	L89 ^b	WRR ^c
0	0.65120(4)	0.6527	0.6570	0.6457
1	0.65411(6)	0.6561	0.6598	0.6481
2	0.6550(4)	0.6582	0.6611	0.6490
3		0.6585	0.6605	0.6479
4		0.6567	0.6578	0.6446
5		0.6522	0.6524	0.6386
6		0.6444	0.6437	0.6291
7		0.6324	0.6311	0.6157
8		0.6153	0.6136	0.5974
9		0.5919	0.5901	0.5731

^aPeterson *et al.* (Ref. 5). Converted from Debye using 1 Db = $0.39343031369 \ ea_0$.

^bLanghoff et al. (Ref. 6).

0021-9606/2008/128(15)/159902/2/\$23.00

experimentally observed. Therefore, in Table II, we also include a lifetime based on our dipole moment function scaled with a factor of 0.9966. This is the average ratio between the experimentally observed (v=0,1,2) dipole moment and our *ab initio* values.

Finally, we make available a new EPAPS document⁴ based on the corrected calculations. The line strengths are computed using the partition function Q(T=296)=80.362 from the HITRAN database. The changes reported here do not significantly alter our conclusions.

TABLE II. Lifetime (in ms) of the $OH(v=1, J=3/2, F_1, p)$ states, computed using various dipole moment functions and methods.

Exp.	e(-)	f(+)	Error bars	
Direct ^a	59.0		±2 ms	
HITRAN ^b	56.6113	56.6244	$\pm 10 - 20\%$	
	$H_{\rm so}(r)$		$H^{ m so}_{ \Omega , \Omega' }$	
Calc.	e(-)	f(+)	e(-)	f(+)
$\mu_{\rm sc}^{\ c}$	57.2246	57.2253	57.2235	57.2242
present ^d	56.8364	56.8371	56.8354	56.8360
nosc ^e	56.8835	56.8842	56.8824	56.8831
$\omega_{H}^{\rm f}$	56.8359	56.8366	56.8272	56.8278
N90 ^g	55.7004	55.7011	55.6989	55.6996
L89 ^h	57.7759	57.7766	57.7742	57.7749
WRR ⁱ	71.6343	71.6352	71.6319	71.6328
L86 ^j	81.3144	81.3154	81.3104	81.3114
M71 ^k	85.6512	85.6522	85.6480	85.6490

^aExperiment by van de Meerakker et al. (Ref. 1).

^bComputed from the HITRAN 2004 (Ref. 8) database.

^cScaled potential and scaled dipole moment.

^dThis work, using the scaled potential.

^eThis work, using the *ab initio* potential.

^fThis work, using HITRAN transition frequencies.

^gFitted dipole moment function by Nelson (Ref. 9).

^hAb initio dipole moment function by Langhoff et al. (Ref. 6).

ⁱAb initio dipole moment function by Werner et al. (Ref. 7).

^jAb initio dipole moment function by Langhoff et al. (Ref. 10).

^kFitted dipole moment function by Murphy (Ref. 11).

128, 159902-1

^cWerner *et al.* (Ref. 7).

^{a)}Electronic mail: gerritg@theochem.ru.nl.

- ¹S. Y. T. van de Meerakker, N. Vanhaecke, M. P. J. van der Loo, G. C. Groenenboom, and G. Meijer, Phys. Rev. Lett. **95**, 013003 (2005).
- ²M. P. J. van der Loo and G. C. Groenenboom, J. Chem. Phys. **126**, 114314 (2007).
- ³P. C. Cosbey, private communication, the r_e value was determined by constructing an RKR-potential from the constants in Table II of the paper.
- ⁴See EPAPS Document No. E-JCPSA6-128-022814 for computed potential energy curve and properties. For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html.
- ⁵K. I. Peterson, G. T. Fraser, and W. Klemperer, Can. J. Phys. **62**, 1502 (1984).
- ⁶S. R. Langhoff, C. W. Bauschlicher, and P. R. Taylor, J. Chem. Phys. **91**, 5953 (1989).
- ⁷H.-J. Werner, P. Rosmus, and E.-A. Reinsch, J. Chem. Phys. 79, 905

J. Chem. Phys. 128, 159902 (2008)

- ⁸L. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, J. Quant. Spectrosc. Radiat. Transf. **96**, 139 (2005).
- ⁹D. D. Nelson, Jr., A. Schiffman, D. J. Nesbitt, J. J. Orlando, and J. B. Burkholder, J. Chem. Phys. **93**, 7003 (1990).
- ¹⁰ S. R. Langhoff, H.-J. Werner, and P. Rosmus, J. Mol. Spectrosc. **118**, 507 (1986).
- ¹¹ R. E. Murphy, J. Chem. Phys. 54, 4852 (1971).

^{(1983).}