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This article proposes methods for efficiently computing the anonymity of entities in networks. We do so

by partitioning nodes into equivalence classes where a node is k-anonymous if it is equivalent to k − 1

other nodes. This assessment of anonymity is crucial when one wants to share data and must ensure the

anonymity of entities represented is compliant with privacy laws. Additionally, in such an assessment, it is

necessary to account for a realistic amount of information in the hands of a possible attacker that attempts

to de-anonymize entities in the network. However, measures introduced in earlier work often assume a fixed

amount of attacker knowledge. Therefore, in this work, we use a new parameterized measure for anonymity

called d-k-anonymity. This measure can be used to model the scenario where an attacker has perfect

knowledge of a node’s surroundings up to a given distance d . This poses nontrivial computational challenges,

as naive approaches would employ large numbers of possibly computationally expensive graph isomorphism

checks. This article proposes novel algorithms that severely reduce this computational burden. In particular,

we present an iterative approach, assisted by techniques for preprocessing nodes that are trivially automor-

phic and heuristics that exploit graph invariants. We evaluate our algorithms on three well-known graph

models and a wide range of empirical network datasets. Results show that our approaches significantly

speed up the computation by multiple orders of magnitude, which allows one to compute d-k-anonymity for

a range of meaningful values of d on large empirical networks with tens of thousands of nodes and over a

million edges.
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1 INTRODUCTION

In order to obtain insights from networks in applied settings, it is desirable to have access to
datasets that represent the real world as accurately as possible. Such empirical network datasets
can be used to obtain insights into, for example, societally relevant issues including disease
spread [1] and social segregation [4]. However, to comply with privacy laws, such data cannot
be publicly shared unless the represented entities are properly anonymized.

In this work, we focus on networks where nodes represent entities of interest (such as people)
and edges represent links between them. An attacker who attempts to deanonymize (a part of) the
network may be able to use the network structure to uniquely identify entities [9, 20]. Therefore it
is important to assess how revealing an entity’s network structure is in possibly large real-world
networks. In a subsequent step, the obtained information on each individual node’s anonymity
can be used to ensure the privacy of entities by means of anonymization. Through anonymization,
the network structure is perturbed such that entities represented can no longer be identified based
on the position in the network. However, this inevitably leads to an overall decrease in data utility:
the extent to which the network can be reliably used for analysis.

Various network anonymity measures have been introduced in the literature [5, 9, 14, 20, 22,
30, 31, 33]. One category of methods is k-anonymity, which is also regularly used in the field of
statistical disclosure control to characterize the anonymity of individuals in relational data [10, 18,
19, 23, 26, 28, 29]. In this category of approaches, each entity is said to be k-anonymous if there
are at least k − 1 other equivalent nodes in the network, which means these k nodes have similar
structural positions. Consequently, when we assume a certain upper bound on the knowledge that
an attacker has on the structural position of each entity, they will find at least k candidate nodes
for each structural position.

Anonymity measures can be based on many different definitions for node equivalence. This re-
sults in measures with different levels of attacker knowledge. Some measures are based on local
properties such as degree [14] or 1-neighborhood isomorphism [20, 31]. In addition, stricter mea-
sures taking into account degree distributions in neighborhoods [9] or automorphisms [30, 33]
have been proposed. One shortcoming of these measures is that most measures assume a fixed
level of attacker knowledge. Second, these measures might be either too lenient, not accounting
for enough knowledge, and therefore not guaranteeing sufficient privacy, or too strict, account-
ing for a very large and therewith unrealistic amount of knowledge. When anonymizing data to
achieve these strict levels of anonymity, a lot of data utility could potentially be lost due to sub-
sequent pertubations to achieve anonymization. Hence, it is desirable to select a measure that
accounts for the right amount of knowledge and therefore measures a suitable level of anonymity.

To account for the requirements above, we propose to use a new measure, d-k-anonymity, and
corresponding algorithms. This measure, for which initial definitions and intuitions are sketched
in [15], models a scenario where an attacker has perfect knowledge about the surroundings of a
node up to, and including, distanced . The value ofd is a parameter that can be set by the user which
makesd-k-anonymity a tunable measure that can be used to measure anonymity in networks while
accounting for different levels of attacker knowledge. With the parameter d , the measure general-
izes previous work: when d = 1 it corresponds to 1-neighborhood isomorphism [20, 31], and when
d is large enough, automorphism [30, 33]. At the same time, it builds upon other measures as it is
more strict than degree [14], and adds to the measure introduced in [9] as it accounts for complete
information about the d-neighborhood.

However, computing d-k-anonymity introduces computational challenges since naive ap-
proaches require a quadratic number of isomorphism checks to determine equivalence of the
neighborhoods of all node pairs, which is a computationally difficult problem. In this work,
we aim at overcoming these challenges by developing several approaches that speed up these
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computations by multiple orders of magnitude. The approaches consist of an iterative approach,
the preprocessing of trivially automorphic nodes and heuristics that exploit graph invariants to
avoid unnecessary computations. Overall, our approaches result in a speedup of multiple orders
in magnitude compared to a naive approach and enable one to efficiently measure d-k-anonymity
for a range of meaningful values of d = 1 up to d = 3 in large empirical networks with tens of
thousands of nodes and over a million edges.

The remainder of this article is structured as follows. First, we discuss related work in Section 2.
Then, in Section 3, we summarize the background information required for the remainder of the
article. Thereafter, in Section 4, we formally defined-k-anonymity and discuss methods and heuris-
tics for measuring it. In Section 5 we describe the data used in the experiments. Next, we discuss
the experiments in Section 6 which focus on both the performance and analysis of the algorithms.
Finally, Section 7 concludes this article and proposes directions for future work.

2 RELATED WORK

In this section, we briefly summarize the work related to our contribution, focusing on the different
measures for anonymity. For a generic overview on anonymity in networks, we refer the reader
to [11].

There are at least two large streams of research on anonymity in networks — differential
privacy and k-anonymity — both originally designed for assessing anonymity in relational
data [10, 18, 19, 23, 26, 28, 29]. The first, differential privacy, gives possibly randomly permuted
answers to user queries about the network to satisfy certain disclosure constraints. As a result,
the anonymity of entities represented is preserved. The second, which is the focus of this article,
uses the concept of k-anonymity. In standard SDC methodology, k-anonymity [18, 19, 23, 26]
assigns a risk of disclosure based on occurrences of attribute values across records. Extensions of
k-anonymity, such as (α ,k )-anonymity [29] extend the general notion of k-anonymity by enforc-
ing diversity in the equivalence classes. For networks, if each node in the network is equivalent to
at least k−1 other nodes, the network is called k-anonymous. An important difference between the
two approaches is that in differential privacy, the network is perturbed to satisfy certain disclosure
constraints. In k-anonymity, measuring the anonymity of nodes is separated from the process of
anonymization.

In order to measure k-anonymity, we have to define what it means for two nodes to be equiva-
lent. The simplest measure is based on the degree of a node [14], in which case nodes are equiva-
lent if they have the same number of connections. Stricter measures that take into account more
structural information are based on 1-neighborhood isomorphism [20, 31], which accounts for the
direct neighborhood of a node, or automorphism [30, 33], which accounts for the entire connected
component that the considered node is part of. These measures assume a fixed level of attacker
knowledge and whereas 1-neighborhood isomorphism is relatively lenient, automorphism is very
strict. A measure that can model different levels of attacker knowledge is introduced by Hay et al.
in [9]. This measure iteratively compares degree distributions in increasingly larger neighborhoods
of a node. However, by only counting degrees, the exact underlying structure, which is accounted
for in 1-neighborhood isomorphism and automorphism, is lost.

The measure of d-k-anonymity (not to be confused with dK-graphs as introduced in [16]) used
in this work improves on the work of [9] and allows one to model different levels of knowledge
by combining automorphism with a tunable measure that enables the user to account for perfect
knowledge of a node’s surroundings up to distance d . Moreover, this measure accounts for more
information than degree [14] and allows the user to differentiate in strictness, ranging from the
level of 1-neighborhood isomorphism as defined in [20, 31] to automorphism as proposed in, e.g.,
[30, 33]. This differentiation can be selected in d-k-anonymity by the user by means of a parameter
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1.7:4 R. G. de Jong et al.

d . This article thus unifies a number of existing lines of research, proposing a tunable measure that
can be used to account for different levels of attacker knowledge.

3 PRELIMINARIES

In this section, we introduce definitions and notation required to understand the remainder of
the article. First, we focus on graph terminology. Second, we discuss k-anonymity and different
definitions for equivalence.

3.1 Graph Terminology

We define a graph or network G = (V ,E) as a set of nodes V and edges E where each edge is
an unordered pair of nodes {v,w } with v,w ∈ V . We let |V | denote the number of nodes and

|E | ≤
( |V |

2

)
the number of edges. We define the degree of a node as deдree (v ) = |{w : {v,w } ∈ E}|,

the average degree as 2 |E |
|V | and the network density as |E |

|V |( |V |−1)/2 . An example graph can be found

in Figure 1.
The distance between two given nodes v,w ∈ V is denoted distance (v,w ). This equals the

minimum number of edges that needs to be traversed to get from node v to node w . Since the
graph is undirected, it holds for every pair of nodes that distance (v,w ) = distance (w,v ). It follows
that distance (v,v ) = 0, and if there is no path between two nodes we define distance (v,w ) = ∞.
The latter is the case when nodes are in different components. Within a component, it holds that
for each pair of nodes, distance (v,w ) < ∞. Empirical networks often have one large component,
the giant component, and many small components. The largest distance between any two nodes
in the graph that does not equal ∞ is defined as the diameter D (G ); this equals the length of the
longest shortest path between any two given nodes.

When we look at the surroundings of a nodev containing all nodesw such thatdistance (v,w ) ≤
d , we look at the d-neighborhood of the node, as defined below. When d = 1 this is also referred
to as the ego network.

Definition 3.1 (d-Neighborhood). Given a graph G = (V ,E) and a node v ∈ V , we define the
d-neighborhood of v , Nd (v ), as the graph G ′ = (V ′,E ′) where:

—V ′ = {w ∈ V : distance (v,w ) ≤ d }.
— E ′ = {{u,w } ∈ E : u,w ∈ V ′}.

In order to determine whether two d-neighborhoods are equivalent, we can use the notion of
isomorphism. We say that two graphs or neighborhoods are isomorphic if their structures are in-
distinguishable. Note that to illustrate how these measures can be used to determine equivalence,
Figure 1 includes an example figure that further explains each of the measures discussed.

Definition 3.2 (Graph Isomorphism). Given two graphs G = (V ,E) and G ′ = (V ′,E ′), a graph
isomorphism is defined as a bijective function ϕ : V → V ′ such that for eachv,w ∈ V it holds that
{ϕ (v ),ϕ (w )} ∈ E ′ iff {v,w } ∈ E.

A special case of isomorphism is an automorphism, denoted by γ , analogously to ϕ. An automor-
phism is an isomorphism from a graph onto itself. We letGγ denote the transformation ofG under
γ . For every graph, there is always at least one automorphism; the function that maps all nodes
onto themselves. When there is an automorphism mapping two different nodes onto each other,
the nodes are said to be in the same orbit. As is the case with isomorphic functions, these nodes
are indistinguishable based on their precise structural position in the graph.

Determining if two graphs are isomorphic is a computationally difficult problem. One method
to determine whether two graphs are isomorphic is by comparing their canonical labelings [17].
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Fig. 1. Graphs with partitions based on different measures for equivalence: degree (a), 1-neighborhood-
isomorphism (b) and automorphism (c, d). Nodes in the same equivalence class have the same color, white
nodes are unique.

These labelings are generated in such a way that two canonical labelings are equal if and only
if the graphs are isomorphic. This canonical labeling is hence one of the possible graphs that is
isomorphic to the original graph. For details about the employed approach to canonical labeling
and for further information on how it is computed, we refer the reader to [17].

Definition 3.3. The canonical labeling of a graph G is the image of a function C such that given
graphs G = (V , E) and G ′ = (V ′, E ′), and any automorphic function γ the following two properties
hold:

— C (Gγ ) = C (G ).
— C (G ) = C (G ′) iff G is isomorphic to G ′.

3.2 Anonymity Measures

When measuring k-anonymity in a graph, the first conceptual step is to partition the set of nodes
V into equivalence classes. A partition P consists of disjoint subsets of V such that their union is
precisely V . Each node v occurs in exactly one equivalence class referred to by Pv , and for two
nodes v,w ∈ Pv we say that they are equivalent. In this case, it follows that Pv = Pw . We define
k-anonymity for nodes and graphs using the definition below.

Definition 3.4 (k-Anonymity). Given a graph G = (V ,E) and equivalence partition P :

— A node v ∈ V is k-anonymous if |Pv | = k .
— The graph G is k-anonymous if for all nodes v ∈ V it holds that |Pv | ≥ k .

In the previous section, various graph properties have been discussed that are proposed in pre-
vious works as a measure for anonymity. In Figure 1, the nodes are partitioned based on three of
these; in each figure equivalent nodes have the same color, whereas white nodes are 1-anonymous
or unique and occur in an equivalence class of size 1. The first and simplest measure is based on
the degree of nodes [14], as shown in Figure 1(a).

Second, Figure 1(b) shows a slightly stricter measure being 1-neighborhood isomorphism. Here
nodes are equivalent if their 1-neighborhoods are isomorphic [20, 31]. The measure therefore
results in a higher number of equivalence classes of smaller sizes. This takes account of the degree
of nodes and other structural properties such as triangles, which occur when two direct neighbors
are connected, e.g., nodes 1, 2, and 3 in the figure. These properties cannot be accounted for when
only taking degrees into account in the assessment of equivalence.
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Third, we consider a measure that accounts for the structure of the entire component a node
occurs in, being k-automorphism [30, 33]. Here nodes are equivalent if they are in the same orbit.
This is a very strict measure; for a graph to be k-anonymous, all its components have to be sym-
metric in at least k − 1 points. This is the case in Figure 1(c) where each node, and therewith the
graph, is 2-anonymous. In this figure, nodes with the same color are in the same orbit. However, in
empirical networks, this is very unlikely; even one node or edge can undo this symmetry resulting
in a large increase in the number of unique nodes, as shown in Figure 1(d). In this figure only nodes
11 and 12 are still equivalent. Henceforth, we will call such nodes twin nodes: they are connected
to the same nodes, without any other connections and are, as a result, structurally identical. We
will further elaborate on this notion in Section 4.4.

Definition 3.5 (Twin Node). Given a graph G = (V ,E), two nodes v,w ∈ V (v � w) are twins if
N1 (v ) \ {v} = N1 (w ) \ {w } and {v,w } � E.

4 APPROACH

In this section, we define the measure of d-k-anonymity and introduce both a naive and itera-
tive approach to compute it. Then, in order to further reduce computation time, we introduce a
preprocessing step based on twin nodes, and two heuristics based on graph invariants.

4.1 d-k-Anonymity

We define d-k-anonymity by saying that two nodes are equivalent if they have the same structural
position in their respective (isomorphic) d-neighborhoods [15]. This implies that when an attacker
has perfect information about the neighborhood of a node up to and including distance d in a d-
k-anonymous graph, there will be at least k possible candidates to which that node is equivalent.
Here d is an input parameter for the measure, and k is a constraint for being anonymous for which
the value can be derived from the resulting equivalence classes.

Definition 4.1 (d-k-Anonymity). Given a graph G = (V ,E), nodes v,w ∈ V are d-equivalent if:

— At least one isomorphism ϕ between Nd (v ) and Nd (w ) exists.
— For one such isomorphism it holds that ϕ (v ) = w .

A node is d-k-anonymous if it is d-equivalent to k − 1 other nodes, and a graph is d-k-anonymous
if all nodes are at least d-k-anonymous.

The parameter d can be used to model the amount of information available to an attacker. When
d = 0, no information is included and all nodes are equivalent. When d = 1 it coincides with 1-

neighborhood isomorphism [20, 31] and when d ≥ D (G ), it coincides with k-automorphism [30, 33]
(both discussed in Section 3.2). The latter follows from that the d-neighborhood consists of the
entire component that the considered node belongs to; when the graph consists of one component
this equals the entire graph. In all other cases, d-k-anonymity can be seen as an approximation of
automorphism; equivalent nodes are indistinguishable if the full structural position of the nodes
up to distance d is known.

4.2 Naive Algorithm

To measured-k-anonymity in a graph, we determine for each pair of nodes if they ared-equivalent
using Definition 4.1. This can be done with the notions of canonical labelings and orbits as defined
in Section 3.1. When the d-neighborhoods of the nodes have the same canonical labeling, they are
isomorphic. In order for the second requirement to hold, there should be at least one isomorphism
that maps the considered nodes onto each other. This holds when the isomorphism maps the
currently considered node in the first graph onto a node in the second graph that is in the same
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ALGORITHM 1: naive-d-k-anonymity

1 Input: Graph G = (V ,E), equivalence class eq = {V }, distance d

2 P = ∅, cache = {}
3 eq, twin = remove_twins (eq) � Optional (Section 4.4)

4 for v1 in eq do � For each node, find the equivalence class

5 Pselect ion = preprocess (P , v1) � Optional (Section 4.5)

6 make_new_partition = True

7 if Pselect ion � ∅ then

8 can1,v1pos = canonical_labelinд(Nd (v1)) � Compute first canonical labeling [17]

9 hcan1 = hash(can1) � Determine hash of labeling

10 cache[v1] = (hcan1,v1pos )

11 end

12 for eq′ in Pselect ion do

13 v2 = eq′[0] � Get first added node from current class

14 if v2 ∈ cache then

15 hcan2,v2pos = cache[v2] � Get from cache

16 else

17 can2,v2pos = canonical_labelinд(Nd (v2)) � Otherwise compute labeling

18 hcan2 = hash(can2)

19 cache[v2] = (hcan2,v2pos )

20 end

21 if hcan1 == hcan2 and same_orbit (v1,v2pos ) then

22 eq′ = eq′ ∪ {v1} � Add equivalent node to class

23 make_new_partition = False � Finished for current node

24 break

25 end

26 end

27 if make_new_partition == True then

28 P = P ∪ {{v1}} � If not equivalent, create new class

29 end

30 end

31 Pnew = add_twins (Pnew , twin) � Optional (Section 4.4)

32 return P � Return equivalence partition

orbit as the node it is compared to. When these two requirements hold, the nodes are d-equivalent.
This allows the full set of nodes to be partitioned into equivalence classes, whose size k can
subsequently be used to determine whether the nodes and the graph are d-k-anonymous, cf.
Definition 4.1.

The pseudocode in Algorithm 1 presents the high-level algorithm to compute the aforemen-
tioned equivalence classes of nodes in the graph. The main part of this algorithm consists of two
nested loops. The outer loop, on lines 4–30, iterates over each nodev1 in the graph, while the inner
loop, on lines 12–26, checks whether v1 belongs to one of the equivalence classes created thus far.
Ifv1 does belong to a previously created equivalence class, line 22 addsv1 to that class. Otherwise,
line 28 creates a new equivalence class consisting of v1. Algorithm 1 additionally contains three
steps to speed up the computation. Lines 3 and 31 perform the pre- and postprocessing of twin
nodes to reduce the number of nodes in eq during computation. This step will be described
in Section 4.4. Second, the preprocessing step in line 5 filters out certain candidate equivalence
classes to reduce the number of comparisons. In Section 4.5 we discuss several variants of this
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preprocessing step. The hashing step in lines 9 and 18 is needed for comparison: two neighbor-
hoods are isomorphic only if the hash values of their canonical labelings are equal. To obtain
this hash, the hashgraph_sg function from [17] is used. In lines 10 and 19 hashes are stored in
a cache that is used in lines 14 and 15 to avoid duplicate computations of canonical labelings.

If a node is equivalent to one node in the equivalence class, it is equivalent to all nodes in
it; therefore we have to compare each node to only one node per equivalence class selected in
line 13. Equivalence of two nodes is assessed in line 21. Two requirements are checked: (1) whether
the hash of the canonical labelings (precomputed using the function sparsenauty from [17] in
lines 8 and 17) are equal and (2) if the nodes considered (v1,v2) are in the same orbit. The function
same_orbit first maps v2 onto a node in the canonical labeling (v2pos ) and then onto a node v ′2 in
Nd (v1). Next, it checks if v1 and v ′2 occur in the same orbit.

If the nodes are equivalent, we add v1 to this class in line 22. Otherwise, we create a new equiv-
alence class that consists solely of this node in line 28, which is also the default action if the set
of equivalence class candidates Pselect ion is empty. The result is a partitioning of the nodes into
equivalence classes, which, as described above, can subsequently be used to assess d-k anonymity
for all nodes.

The cache used to avoid redundant computations of canonical labelings consists of two parts. We
store for each equivalence class (1) a hash integer generated by the Nauty function hashgraph_sg
which returns a unique integer representing the given canonical labeling, and (2) the position of
the node in this canonical labeling (necessary for the second condition of Definition 4.1). The first
is used to determine if the neighborhoods are isomorphic and the second to determine if the nodes
are in the same orbit. Therefore, when both are known, comparing two nodes will require only
two comparisons and access to a few array elements (for the orbit) to determine if two nodes are
d-equivalent. As a result, the canonical labeling of each node has to be computed at most once, and
any further comparisons can be done in constant time. The amount of memory used for storing
these values is only linear in the number of nodes. Note that a version without cache would omit
lines 10, 14, 15, and 19 in Algorithm 1.

4.3 Iterative Algorithm

Algorithm 1 has one disadvantage. Since the d-neighborhoods of nodes can be relatively large,
the computation of canonical labelings in lines 8 and 17 can be relatively expensive. At the
same time, all nodes must be compared at least once, which requires the canonical labeling of
the d-neighborhood for each node to be computed. To counteract this disadvantage, we introduce
the iterative approach illustrated in Algorithm 2.

This approach uses the property that when nodes are (d + 1)-equivalent, they need to be
d-equivalent [15]. Hence, to determine whether two nodes are (d + 1)-equivalent, we only
compare them when they have already been found to be d-equivalent. Using this approach, we
essentially let the neighborhood radius increase iteratively. In the first iteration, the algorithm
requires many comparisons, but these are relatively fast. During later iterations, the size of
neighborhoods compared increases, which yields a strong growth in the computational time
necessary to compute canonical labelings. However, as a result of previous iterations, smaller
equivalence classes are obtained and fewer comparisons are required overall. The effect of this
approach on the runtime will be investigated in Section 6.

4.4 Twin Nodes

As briefly discussed in Section 4.2, the algorithm includes an optional preprocessing step that
detects twin nodes. Twin nodes are nodes with the exact same direct neighbors (Definition 3.5
in Section 3.2). In empirical networks, they can be observed frequently as a result of preferential
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ALGORITHM 2: iterative-d-k-anonymity

1 Input: Graph G = (V ,E), equivalence class eq = {V }, distance d

2 eq, twin = remove_twins (eq) � Optional (Section 4.4)

3 Pold = eq

4 for cur_dist = 1 to d do � Increase distance

5 Pnew = ∅
6 for eq_it in Pold do � Split each equivalence class

7 Pnew = Pnew ∪ naive-d-k-anonymity(G, eq_it , cur_dist ) � Algorithm 1

8 end

9 Pold = Pnew

10 end

11 Pnew = add_twins (Pnew , twin) � Optional (Section 4.4)

12 Return: Pnew � Return equivalence partition

attachment and the skewed degree distribution [2] which results in a large number of nodes with
a low degree. An example of twin nodes are nodes 11 and 12 in Figure 1(d).

Theorem 4.2. Given a graphG = (V ,E) and nodesv,w ∈ V (v � w). If nodesv,w are twins, then

they are in the same orbit.

Twin nodes have a special property: because they are connected to the same nodes, they are
in the same orbit (for a formal proof, see Appendix A). Therefore, we know that twin nodes are
equivalent with respect tod-k-anonymity for any given distanced . When two nodes are twins, and
the equivalence class of one of the nodes has been identified, then the other node can be added to
the equivalence class of its twin.

We preprocess these twin nodes in Algorithm 2, line 2 by first partitioning the nodes with the
same direct neighbors into the same set. To find the twin nodes more efficiently, we keep track
of a map containing a set of neighbors and the corresponding node. If for a given node the set
of neighbors already appears in the map, we have found a twin for the current node, and add it
to a set of nodes that are twins of each other. Otherwise, if the set of neighbors is not included
in the map, we add a new entry for the current node. This approach results in a time complexity
of O ( |V |loд |V |) to find all twin nodes. From each set of nodes that are twins, one node is used in
the computation of the equivalence classes and the remainder of the twin nodes are not taken into
account during computation. To balance the gain and computational time of this step, it is possible
to limit the computation to a fixed number of neighbors (see Section 6.1 and 6.3.2). After execution
of the algorithm, each skipped twin node is added to the correct equivalence class containing the
node that contains its twin in Algorithm 2, line 11.

4.5 Heuristics

The last method to speed up the computation is by the use of heuristics. Instead of comparing
each node to all equivalence classes, we use a heuristic to make a selection of equivalence classes
to compare it to (Algorithm 1, line 5). This results in a smaller set of candidate equivalence classes.
Furthermore, when there are no candidate classes for a node, no canonical labeling computation
is required. Only when this new equivalence class is a candidate for a different node, the labeling
will be computed and stored in the cache in lines 17–19.

The heuristics used are cases of a graph invariant: properties that two graphs have in common if
they are isomorphic. Since isomorphism is the first requirement for d-k-anonymity, we have cho-
sen to, before comparing canonical labelings, filter the set of candidate classes using the following
heuristics:
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— count: the number of nodes and edges in the d-neighborhood.
— degrees: the degree distribution in the d-neighborhood.

Values for the graph invariants are computed during each iteration by first obtaining the d-
neighborhood, and then computing the values. The first invariant is the easiest to compute and
compare, yet, due to the iterative application in Algorithm 2, very powerful as it additionally cap-
tures other properties such as the distance distribution of nodes and edges in the d-neighborhood.
It should be noted that the computation time of determining these heuristics is constant or linear
in the number of nodes given that neighborhoods are stored in an adjacency list format. This is
negligible compared to that of the more expensive canonical labeling computations.

The degree distribution is more time-consuming to compute, but also more informative. Note
that from the degree distribution, the number of nodes and edges can be derived, and therefore the
same information is included; the number of nodes equals the number of degrees that is counted,
and the number of edges equals half of the sum of each degree multiplied by its occurrence. We
empirically analyze the effect of both heuristics on performance in Section 6.

5 DATA

For the experiments, we applied the algorithms introduced in Section 4 to artificial networks gener-
ated using three different commonly used graph models, as well as 32 empirical networks gathered
from various open source repositories.

The graph models are used to assess how the anonymity and runtime change as the density
increases. We have chosen three common graph models that reflect different aspects of empirical
networks. The first and simplest graph model is the Erdős-Rényi (ER) model [6] which adds each
possible edge with a probability 0 < p < 1. Second, the Barabási-Albert (BA) model [3] accounts
for preferential attachment. In constructing this type of graph, each added node is connected to
m different nodes where nodes are more likely to attach to nodes with a high degree. This results
in a skewed degree distribution that is often observed in empirical networks [2]. Third, the Wats-

Strogatz (WS) model [27] accounts for small average path lengths and clustering. These graphs
are generated by first placing the nodes in a circle and then connecting each node to its m ≥ 2
nearest neighbors. Then each edge is rewired with probability pr = 0.5, which is a common value
that is for example also used in [20]. This balances the values pr = 0.0, which results in a circle
graph, and pr = 1.0 which resembles an ER graph.

The empirical networks and their topological characteristics can be found in Table 1. This table
contains for each network the name (leftmost column), the type (rightmost column), structural
characteristics (columns two to six), the fraction of unique nodes using 1-k-anonymity (column
seven) and the fraction of twin nodes skipped by configurations that include the twin node step
(column eight). Networks used are of various categories and have a variety of sizes, densities and
other properties. The networks can consist of multiple components. While in some networks, such
as biological networks, anonymity perhaps does not need to be measured for privacy reasons, we
have chosen to include these since it could lead to insights into how different types of network
structures show different distributions of anonymity. For all networks, directionality and any ad-
ditional metadata are ignored. All networks are openly available and can be found in the corre-
sponding repository cited in the leftmost column.

6 EXPERIMENTS

In this section, we test and compare the performance of the various algorithms and configura-
tions to compute d-k-anonymity. First, we summarize the experimental setup used. Second, we
discuss the results on graph models including the performance of different configurations and the
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Table 1. Descriptives of the Used Empirical Networks

Network |V | |E | Average
degree

Average
distance

D(G)
Fract.

unique
d = 1

Fract.
twins

skipped
Type

Radoslaw emails [12] 167 3,251 38.90 1.9 5 0.77 0.036 Communication
Primary school [25] 236 5,899 50.0 1.8 3 1.00 0.000 Human contact
Moreno innov. [12] 241 923 9.1 2.5 5 0.63 0.004 Communication

Gene fusion [12] 291 279 1.9 3.8 9 0.02 0.505 Bio
Copnet calls [24] 536 621 8.4 3.0 6 0.04 0.018 Communication
Copnet sms [24] 568 697 2.4 7.3 20 0.04 0.067 Communication
Copnet FB [24] 800 6,429 16.1 6.3 7 0.81 0.001 Facebook
FB Reed98 [21] 962 18,812 39.1 2.4 6 0.91 0.006 Facebook

Arenas email [12] 1,133 5,451 9.6 3.6 8 0.49 0.022 Communication
Network science [12] 1,461 2,742 3.8 6.3 17 0.07 0.024 Co-autorship

FB Simmons81 [21] 1,518 32,989 43.5 2.6 7 0.91 0.002 Facebook
DNC emails [12] 1,893 4,466 4.7 3.3 8 0.11 0.628 Facebook

Moreno health [12] 2,539 10,455 8.2 4.5 10 0.33 0.001 Human social
FB Wellesley22 [21] 2,970 94,900 63.9 2.5 8 0.93 0.000 Facebook

Bitcoin alpha [21] 3,783 14,124 7.5 3.6 10 0.20 0.239 Online social (trust)
GRQC collab. [13] 5,242 14,496 5.5 6.1 17 0.13 0.058 Co-autorship

FB Carnegie49 [21] 6,637 249,967 75.3 2.7 8 0.90 0.003 Facebook
Pajek Erdős [12] 6,927 11,850 3.4 3.7 4 0.07 0.658 Co-autorship

DT interaction [32] 7,341 15,138 4.1 5.9 18 0.00 0.432 Bio
DG assoc. [32] 7,813 21,357 5.5 4.2 8 0.01 0.469 Bio

FB GWU54 [21] 12,193 469,528 77.0 2.8 9 0.90 0.002 Facebook
Anybeat [21] 12,645 49,132 7.8 3.1 10 0.15 0.443 Online social

CE-CX [21] 15,229 245,952 32.3 3.7 13 0.57 0.005 Bio
Astro Physics [21] 18,771 198,050 21.1 4.3 14 0.37 0.015 Co-autorship

FB BU10 [21] 19,700 637,528 64.7 3.0 9 0.89 0.002 Facebook
FB Uillinois [21] 30,664 1,048,574 68.4 3.1 9 0.90 0.001 Facebook
Enron email [13] 36,692 183,831 10.0 4.0 13 0.19 0.264 Communication

FB Penn [21] 41,536 1,362,220 65.6 3.1 8 0.88 0.001 Facebook
FB wall 2009 [12] 46,952 193,494 8.2 5.7 18 0.19 0.067 Communication

Brightkite [21] 58,228 214,078 7.4 4.9 18 0.16 0.157 Online social
The marker cafe [7] 69,413 1,644,849 47.4 3.0 9 0.42 0.167 Human contact

Slashdot zoo [12] 79,116 467,731 11.8 3.9 12 0.12 0.204 Online social

The average distance is obtained from metadata in the repository. When not available, the average distance is

approximated by computing the distance from 200 random nodes to 200 random nodes. For each network, we list the

fraction of unique nodes at distance 1 and the fraction of skipped nodes that have at least one twin.

anonymity distribution. Third, we focus on the empirical networks and discuss the performance
of heuristics, anonymity distributions and their effect on the computation time. This presents the
reader with a complete overview of the overall performance of the proposed approaches on graph
models and empirical networks.

6.1 Experimental Setup

For the experiments, we implemented the d-k-anonymity measure described in Section 4 in C++
and used the Nauty framework [17] to compute the canonical labelings and orbits. Our source
code is available at https://github.com/RacheldeJong/dkAnonymity.

We executed experiments on both the three graph models with 1,000 nodes each and the em-
pirical networks as discussed in Section 5. For all experiments, we computed d-k-anonymity for
d = 5. Compared to the observed average path lengths and diameters, this is a large value that
accounts for a lot of attacker knowledge, likely much more than available in a realistic scenario.
In the comparative performance experiments in Section 6.3, apart from d = 5, we also report on
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results for d = 2, for which the best configurations are able to finish in the allotted amount of
time for all networks considered. More importantly, this value constitutes a meaningful parameter
setting, going well beyond existing 1-neighborhood isomorphism approaches (e.g., as proposed
in [20, 31]) in terms of strictness, while staying away from neighborhoods consisting of thousands
of nodes, a less realistic attacker scenario often encountered when choosing d = 5 in empirical
networks. For more discussion on how the various parameter settings essentially mimic previous
approaches to computing anonymity, see Section 4.1.

We used the configurations corresponding to the approaches discussed in Section 4. For the
graph models, the following configurations were used:

— naive: immediately compute for d = 5 (Algorithm 1, no heuristics).
— iterative: iteratively increase neighborhood radius (Algorithm 2, no heuristics).
— count: iterative + the number of nodes and edges heuristic.
— degrees: iterative + the degree distribution heuristic.

To account for the nondeterminism in the generative process of the graph models, the average
over 10 graph realizations as generated by NetworkX [8] is reported. For each graph, we have used
a time limit of one hour. The twin node preprocessing step, and thus the twin configuration are
not included in the initial results because of the linearly increasing expected minimum degree in
the discussed graph models.

For the empirical networks, we have used the five configurations below. For the last three con-
figurations, we additionally use the twin node preprocessing step which finds all twin nodes with
a degree of at most 5. This cut off is chosen based on the low fraction of twin nodes found with
a degree larger than 5 (see Section 6.3.2 and Figure 6(b)) and the substantially longer computa-
tion time required to detect these. For the empirical networks, we used a time limit of three hours
and report the average runtime and standard deviation over 5 runs. Subsequent results reported
include values obtained within this time limit.

— naive: immediately compute for d = 5 (Algorithm 1, no heuristics).
— iterative: iteratively increase neighborhood radius (Algorithm 2, no heuristics).
— twin: iterative + preprocess twin nodes (no heuristics).
— count: twin + the number of nodes and edges heuristic.
— degrees: twin + the degree distribution heuristic.

All experiments are conducted on a machine with 512 GB RAM (however, memory is never a
limiting factor), 128 AMD EPYC 7702 cores at 2.00 GHz, and 256 threads. During the experiments,
each run uses one thread, which is not shared with different processes.

6.2 Graph Models

To compare the performance of the different configurations, we first discuss results on different
graph models with various network densities. The results can be found in Figure 2 where the
runtime is plotted for the three graph models using three different settings (one in each subfigure).
The density increases from an average degree (ER), orm, the number of nodes to which each node
is initially connected (BA, WS), from 1 for ER and BA, or 2 for WS (very sparse), to 256 (dense).
To better show the difference in results over the various graph models, runtime results for each
separate graph model can be found in Appendix B, Figure 8.

We first focus on Figure 2(a), which shows the default settings described in Section 6.1. The
largest speedup, of several orders of magnitude, is achieved when switching from the naive to the
iterative approach, except for ER graphs with average degree 1. Compared to naive, which still
achieves average runtimes of under 10 seconds on all networks, these configurations are in some
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Fig. 2. Runtime (vertical axis) of different algorithm configurations (indicated by color) on the three graph
models (indicated by line type) with 1,000 nodes, for increasing network density measured either by “Average
degree” or “m” (horizontal axis). Each result is averaged over 10 generated graphs.

cases 100 times faster. A part of this speedup can be explained by the different radii used by both
approaches. In the naive approach, choosing a larger neighborhood radius d results in more cases
where expensive canonical labelings have to be computed. The other part, which is discussed in
Section 6.2.1, can be explained by the anonymity distribution.

When adding a heuristic to the iterative approach, the overall runtimes decrease slightly.
For graphs with small average degrees, a speedup of up to a factor 10 can be observed and for
more dense networks, the runtimes observed are very similar. The overall effect of adding these
heuristics is that smaller candidate classes are created. In most cases, these smaller equivalence
classes will result in a smaller number of already cheap comparisons. However, when there
are no candidates and the candidate class is empty, no canonical labeling has to be computed.
This has the potential to save significant amounts of time, but for graph models this affects the
runtime only slightly. When comparing the heuristics themselves, their achieved runtimes are
very similar. While the degrees heuristic is more expensive to compute, it also contains more
information than count, but this does not result in a significant difference. As a robustness
check, runtimes on graph models with 10,000 nodes are included in Appendix B Figure 7. The
results show similar differences between the configurations as reported for 1,000 nodes in
Figure 2(a).

To assess the effect of the twin node preprocessing step, we have included additional results
for the same configurations where the twin node preprocessing step is included in Figure 2(b).
Compared to the results without cache, this step in most cases increases the runtimes. We believe
that this happens because twin nodes are less common in random graph models.

Next, we assess the importance of using a cache. In Figure 2(c), the runtimes for the graph models
are plotted, analogously to Figure 2(a), when no cache is used (see Section 4.2). When comparing
the figures, they show that the use of the cache results in a speedup of multiple orders of magnitude
for the naive and iterative configurations, while for the configurations with heuristics only a
small speedup is obtained. For naive, some of the most dense instances are not even finished
within the time limit of one hour. However, when not using the cache a very large speedup can
be obtained by using heuristics. Apparently, the use of a cache or the heuristics both result in
major speedups when used separately. When the cache is used, this might already avoid many
comparisons that are otherwise avoided by the use of a heuristic.

6.2.1 Performance vs. Anonymity. An important instrument for understanding the performance
of the configurations is the anonymity distribution, which is plotted in Figure 3. In this figure, each
point represents one equivalence class in one of the graphs. The vertical axis indicates the size of
the equivalence class, while the horizontal axis indicates the average degree of the considered
graph. This figure shows a decrease in anonymity as a result of increasing density (horizontal
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Fig. 3. Anonymity distribution in graph models with different densities measured by either “Average degree”
or “m” (horizontal axis) for distances d = 1, 2, and 3, indicated by different colors. Each dot represents the
size of one equivalence class (vertical axis), which corresponds to the anonymity of all nodes in it. A value
of 100 denotes an equivalence class containing one (unique) node. Results over ten generated graphs are
included for each value for the average degree orm.

axis) and distance d (indicated by different colors). For interpretability of the figures, only results
up to distance 3 are included.

In dense graphs, more diverse neighborhoods are possible, which are all unique after an average
degree of 64 at distance 1. While the neighborhoods in dense graphs tend to be larger, and therefore
the canonical labeling computation more expensive, the increasing uniqueness even at smaller
distances means that after the second iteration very few comparisons have to be made. This can
explain the large difference in runtime when comparing the naive and iterative configurations;
for the first, 5-neighborhoods of all nodes need to be computed, but at distance 1, a large fraction of
the nodes are already unique and significantly less work is required in later iterations. Therefore,
iterative has to compute relatively few canonical labelings of larger neighborhoods.

For all three graph models, the anonymity distribution seems very similar, especially BA and
WS. ER does achieve slightly more anonymity overall, which could be a result of the higher density
in BA and WS graphs, but also due to the generative process which adds edges randomly rather
than based on some other systematic mechanism.

6.3 Empirical Networks

For the second part of the experiments, we look at the performance for the empirical networks
listed in Table 1. We have summarized the most important results in Figure 4 and Table 2, the
latter containing the runtimes for the five configurations (columns two to six), as explained in
Section 6.1 both for d = 2 and 5. To summarize the overall performance improvement of the
approaches, the seventh column reports for each dataset the speedup obtained when using the

Fig. 4. Last finished iteration (indicated using color) for different configurations (vertical axis).
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best performing configuration, being count, degree, or in one case twin, compared to naive.
The results demonstrate speedups of several orders of magnitude, ranging from 2.50 to 1,154.06.
In addition, for more detailed comparison of the configurations, in the text below we report on
average speedup values obtained by comparing relevant variants of the algorithm.

Overall, we see similar differences in performance of the configurations as observed for the
graph models in Figure 2. Figure 4 illustrates the number of empirical networks on which each con-
figuration finished a certain iteration in the set time limit of three hours. Note that these iterations
directly correspond with distances, and d = 1 corresponds with 1-neighborhood isomorphism in-
troduced in [20, 31]. In the figure, it can be seen that the iterative configuration finishes one ad-
ditional network up to d = 5. When using the twin node preprocessing step, three more networks
are finished within the time limit. The configurations that use heuristics always finish at least the
second iteration, while for other configurations this is not always the case; iterative and twin
finish only the first iteration in two cases, and naive none of the iterations in 10 cases. However,
note that since naive requires only one iteration, which is the same as the fifth iteration for other
configurations, this configuration either finishes all iterations or none. Overall, by using degree or
count, we can compute d-k-anonymity with d ≤ 2 for all included networks, and d = 3 for most.

We now turn to more detailed results per network, shown in Table 2, focussing on the case when
d = 5. When comparing the results to naive without any heuristics, using iterative resulted in a
speedup of multiple orders of magnitude on empirical networks. When accounting for all runtimes
reported for the naive configuration, using a heuristic leads to an average speedup of 99.36 and
98.56 for count and degrees compared to naive. Compared to twin this equals 1.27 and 1.23
respectively which shows that using a heuristic results in a small speedup on the empirical data.
This is similar to the results on graph models.

However, adding the twin node step to the iterative approach does result in a significant speedup
of 7.97 on average. For most networks, this value is between 1 and 3, but for some networks, being
“Bitcoin alpha”, “DNC e-mails”, “DT interaction” and “Gene fusion” this speedup is much larger.
These are all networks with a large fraction of twin nodes skipped, as shown in Table 1, which
implies that due to the preprocessing step a large fraction of nodes do not have to be taken into
account and no comparisons or canonical labeling computations are required.

Overall, for the empirical networks the use of the iterative approach has the largest effect on
the runtime and thereafter the twin node preprocessing step. Adding heuristics results in a small
speedup and a shorter runtime on most networks, except for a few.

Now turning to the results for d = 2, we note that all networks can be processed, albeit only
when heuristics are employed. Similar trends as for d = 5 are observed, with heuristics demon-
strating speedups of 99.36 and 98.56 on average for count and degree compared to naive. For
d = 2 the effect of preprocessing twin nodes is smaller and results in a speedup of 1.39 compared
to iterative. At the same time, adding the heuristics results in larger speedups of 14.28 and 21.55
for count and degree compared to twin.

6.3.1 Performance vs. Anonymity. In order to further understand the largest differences in per-
formance in Section 6.3, we focus on the anonymity of the nodes in the networks, which (recall
from Sections 3 and 4) is equal to the size of the equivalence class a node belongs to. The seventh
column of Table 1 shows that the fraction of unique nodes at distance 1 can differ a lot between
networks. For a few networks this contains only a small fraction of nodes (e.g., for “DT interaction”
and “Network science”). However, for most networks this equals a fraction larger than 0.1 and for
most Facebook networks, this is larger than 0.9. This differs from the artificial graph models in
Section 6.2 where all nodes were unique at an average degree (orm for BA and WS) of 32 or larger.
Thus, unlike for the included dense graph models, for empirical networks comparisons need to be
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Table 2. Runtime Results for Computing d-k-anonymity for d = 2 and d = 5 on Empirical Networks,
using Five Configurations and a Time Limit of Three Hours

Network naive iterative twin count degree Speedup

d = 2
Radoslaw email 0.03 (0.01) 0.02 (0.00) 0.02 (0.00) 0.01 (0.00) 0.01 (0.00) 2.5
Primary school 0.06 (0.01) 0.02 (0.00) 0.02 (0.00) 0.02 (0.00) 0.02 (0.00) 3.3
Moreno innov. 0.00 (0.00) 0.00 (0.00) 0.00 (-) 0.00 (-) 0.00 (-) -

Gene fusion 0.02 (0.00) 0.01 (0.00) 0.00 (-) 0.00 (-) 0.00 (-) -
Copnet calls 0.06 (0.01) 0.03 (0.00) 0.03 (0.00) 0.02 (0.00) 0.02 (0.00) 3.33
Copnet sms 0.02 (0.01) 0.01 (0.00) 0.00 (0.01) 0.00 (-) 0.00 (-) -
Copnet FB 0.18 (0.02) 0.04 (0.00) 0.03 (0.00) 0.02 (0.00) 0.02 (0.00) 8.80
FB Reed98 0.78 (0.05) 0.10 (0.00) 0.09 (0.00) 0.07 (0.00) 0.08 (0.00) 10.86

Arenas email 0.15 (0.00) 0.05 (0.00) 0.04 (0.00) 0.03 (0.00) 0.03 (0.00) -
Network science 0.03 (0.01) 0.03 (0.00) 0.02 (0.00) 0.02 (0.00) 0.02 (0.00) 1.60

FB Simmons81 1.79 (0.15) 0.16 (0.00) 0.14 (0.00) 0.12 (0.01) 0.12 (0.00) 15.41
DNC emails 59.85 (1.58) 19.86 (1.13) 5.72 (0.02) 0.36 (0.01) 0.30 (0.01) 196.89

Moreno health 0.25 (0.00) 0.15 (0.01) 0.14 (0.00) 0.06 (0.00) 0.06 (0.01) 4.17
FB Wellesley22 8.79 (0.28) 0.54 (0.05) 0.50 (0.00) 0.43 (0.01) 0.47 (0.01) 20.26

Bitcoin alpha 48.55 (3.09) 16.09 (0.25) 9.50 (0.03) 0.37 (0.00) 0.40 (0.01) 131.92
GRQC collab 0.90 (0.06) 0.38 (0.01) 0.35 (0.01) 0.21 (0.00) 0.21 (0.00) 4.25

FB Carnegie49 47.46 (1.80) 2.12 (0.06) 1.99 (0.00) 1.73 (0.01) 1.82 (0.02) 27.49
Pajek Erdős 219.27 (54.68) 10.27 (0.19) 6.66 (1.54) 0.21 (0.00) 0.19 (0.01) 1,154.06

DT interaction 251.92 (17.73) 212.15 (11.24) 197.82 (17.19) 4.73 (0.02) 4.03 (0.04) 62.57
DG association 1,295.36 (76.40) 1,085.71 (9.14) 982.96 (10.05) 4.86 (0.02) 2.53 (0.01) 512.00

FB GWU54 140.59 (5.75) 3.99 (0.01) 3.89 (0.02) 3.34 (0.01) 3.44 (0.02) 42.07
Anybeat - - - 4,668.03 (29.54) 4,055.49 (36.46) -

CE-CX 37.22 (2.98) 3.23 (0.02) 3.13 (0.00) 2.38 (0.01) 2.54 (0.01) 15.63
Astro physics 808.86 (40.43) 66.48 (3.66) 61.32 (0.55) 45.86 (0.28) 46.23 (0.24) 17.64

FB BU10 209.32 (6.86) 5.76 (0.07) 5.50 (0.17) 4.29 (0.02) 4.29 (0.01) 48.84
FB Ullinois 475.07 (14.28) 11.12 (0.22) 10.51 (0.35) 7.94 (0.02) 7.95 (0.08) 59.83

Enron email - 3,573.90 (109.36) 746.16 (1.74) 254.41 (0.80) 254.19 (0.41) 0.00
FB Penn94 771.28 (38.40) 18.56 (0.51) 17.67 (0.73) 13.33 (0.03) 13.17 (0.03) 58.57

FB wall 2009 48.79 (3.49) 8.33 (0.03) 8.46 (0.05) 2.06 (0.02) 1.93 (0.01) 25.33
Brightkite 2,281.35 (124.25) 408.02 (9.98) 354.75 (15.35) 17.50 (0.07) 17.70 (0.05) 130.36

The marker cafe - - - 624.93 (28.31) 649.92 (25.59) -
Slashdot zoo - 7,798.00 (94.65) 7,051.39 (36.36) 453.15 (10.95) 476.96 (80.89) -

d = 5
Radoslaw e-mails 0.03 (0.00) 0.03 (0.00) 0.02 (0.00) 0.01 (0.00) 0.02 (0.00) 2.50

Primary school 0.06 (0.00) 0.02 (0.00) 0.02 (0.00) 0.02 (0.00) 0.02 (0.00) 3.33
Moreno innov. 0.01 (0.00) 0.01 (0.00) 0.01 (0.00) 0.00 (-) 0.00 (-) -

Gene fusion 0.07 (0.00) 0.11 (0.00) 0.01 (0.01) 0.00 (-) 0.00 (-) -
Copnet calls 0.14 (0.00) 0.05 (0.00) 0.03 (0.00) 0.02 (0.00 0.02 (0.00) 7.78
Copnet sms 0.08 (0.00) 0.02 (0.00) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00) 10.00
Copnet FB 0.35 (0.00) 0.04 (0.00) 0.03 (0.00) 0.02 (0.00) 0.03 (0.01) 15.91
FB Reed98 0.96 (0.01) 0.14 (0.00) 0.10 (0.00) 0.08 (0.00) 0.09 (0.00) 12.26

Arenas email 1.61 (0.00) 0.16 (0.01) 0.05 (0.01) 0.04 (0.00) 0.04 (0.00) 42.37
Network science 0.52 (0.00) 0.37 (0.01) 0.31 (0.00) 0.30 (0.00) 0.31 (0.01) 1.72

FB Simmons81 2.41 (0.01) 0.21 (0.01) 0.15 (0.00) 0.13 (0.01) 0.13 (0.00) 18.57
DNC emails 3,535.10 (156.67) 5,325.36 (379.89) 135.77 (1.50) 129.90 (0.63) 130.74 (1.59) 27.21

Moreno health 2.69 (0.01) 0.17 (0.01) 0.15 (0.00) 0.07 (0.00) 0.06 (0.01) 43.35
FB Wellesley22 12.20 (0.30) 0.54 (0.05) 0.50 (0.01) 0.44 (0.01) 0.48 (0.02) 27.73

Bitcoin alpha 7,973.51 (202.41) 4,212.82 (85.59) 52.54 (0.71) 44.34 (2.41) 43.20 (0.48) 184.58
GRQC collab 1,210.61 (24.30) 222.06 (9.64) 177.83 (0.73) 179.18 (0.80) 179.00 (0.78) 6.76

FB Carnegie49 93.05 (2.94) 3.48 (0.08) 2.22 (0.00) 1.96 (0.01) 2.04 (0.01) 47.57
Pajek Erdős - - 2,911.55 (289.22) 3,095.08 (31.53) 3,101.19 (58.17) -

DT interaction - 9,949.75 (216.24) 743.97 (17.09) 607.91 (3.58) 609.55 (5.46) -
DG association - - 1,875.30 (24.01) 874.41 (1.38) 878.53 (15.22) -

FB GWU54 396.43 (4.69) 8.09 (0.04) 4.49 (0.03) 3.95 (0.01) 4.05 (0.02) 100.41
Anybeat - - - - - -

CE-CX 1,381.02 (23.26) 12.37 (0.14) 4.28 (0.01) 3.47 (0.01) 3.62 (0.02) 398.45
Astro physics - - - - - -

FB BU10 1,384.50 (25.45) 14.85 (0.13) 6.85 (0.24) 5.60 (0.03) 5.59 (0.01) 247.85
FB Ullinois 3,009.54 (82.29) 22.85 (0.69) 11.77 (0.37) 9.17 (0.01) 9.19 (0.09) 328.12

Enron email - - - - - -
FB Penn94 9,117.50 (110.58) 55.17 (1.01) 23.80 (1.03) 19.28 (0.03) 19.17 (0.03) 475.66

FB wall 2009 - - 653.23 (2.27) 638.05 (1.96) 639.09 (2.90) -
Brightkite - - - - - -

The marker cafe - - - - - -
Slashdot zoo - - - - - -

Runtimes and standard deviations reported between parenthesis are measured over five runs. Runs that did not

terminate are denoted “-”. Speedups reported compare the runtime of the best configuration to naive.

made to determine if nodes are still equivalent at a larger distance which implies that computa-
tional effort is still required in later iterations, even in networks with high densities.

In Figure 5, the anonymity distribution is plotted for two networks: “FB wall” and “Bitcoin alpha”.
Overall, their distributions both appear to resemble a fat-tailed power-law, which interestingly
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Fig. 5. Anonymity distributions in two empirical networks. Each dot represents the number of occurrences
(vertical axis) of that equivalence class size (horizontal axis). This size corresponds to the anonymity of all
nodes in it. A value of 100 denotes an equivalence class containing one (unique) node.

occurs for all networks that have a large enough number of distinguishable equivalence class sizes.
Yet, the anonymity distribution can vary greatly per network.

For the first network, equivalence class sizes from different iterations can be distinguished. This
shows that even during the fifth iteration, there are still large equivalence classes with over a thou-
sand nodes. The number of unique nodes, however, increases quickly when the distance equals 2.
This increase seems to have the most effect on the overall anonymity. From distance 3 onwards,
the anonymity only decreases slightly. For the “Bitcoin alpha” network, a lot of anonymity is lost
when increasing to distance 2, and further increasing the distance affects the anonymity distribu-
tion only slightly. In this figure, only three iterations can effectively be distinguished. Overall, the
most substantial differences in anonymity are observed between d = 1 and d = 2. This finding may
in particular prove relevant for previously proposed approaches such as [20, 31], which explicitly
attempt to shed light on (attacks on) privacy in social networks, yet are essentially limited to a
possibly less realistic attacker scenario, i.e., a value of d = 1.

6.3.2 Twin Nodes and Canonical Labeling. We observed in Section 6.3 that including the twin
node preprocessing step can lead to significantly lower runtime on empirical networks. Below, we
investigate possible causes.

The most important (and possibly expensive) step of computing d-k-anonymity is the com-
putation of canonical labelings. To understand the runtime of this computation, we plot for all
empirical networks the size of the d-neighborhoods of nodes against the time it takes to compute
its canonical labeling in Figure 6(a). All results plotted are obtained by the count configuration
in the time limit of three hours. This figure shows that for most neighborhoods encountered,
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Fig. 6. Sizes of d-neighborhoods (horizontal axis) plotted against the runtime to compute its canonical label-
ing (a) and the occurrence of this size for twin nodes (b). The distance d is indicated by the color.

canonical labeling computation actually takes under a hundredth of a second. However, for larger
neighborhoods, starting at 100 nodes, the runtime required can increase significantly. These
neighborhood sizes occur after the first iteration. When neighborhoods contain over 10,000 nodes,
the computation time can be over 15 minutes.

These nodes can be seen as so-called bottleneck nodes which can immensely impact the runtime
of the algorithms and eventually cause it to not compute d-k-anonymity for larger distances in
the set time limit. To illustrate this, we included results for the four largest networks in Figure 9
in Appendix C. These figures show that for “Brightkite” and “The Marker Cafe”, two networks
for which the algorithm did not finish in the given time limit, neighborhoods were encountered
for which the canonical labeling computation requires over 15 minutes. At the same time, for “FB
Penn94” and “FB wall”, the computation takes at most seconds for a single node. For these networks
the algorithm does finish all iterations.

In Figure 6(b), the sizes of the d-neighborhoods of the twin nodes that occurs in one of the 32
empirical networks are plotted. This shows that twin nodes can have large neighborhoods, which
in turn lead to possibly long canonical labeling computation times. The figure also shows that the
number of nodes in the 1-neighborhoods of the twin nodes, which equals their degree plus one,
is relatively small; at most 100. When limiting the maximum degree to a small value, such as five
which is used in our experiments, we capture a very large fraction of twin nodes.

7 CONCLUSIONS AND FUTURE WORK

In this article, we investigated algorithms for efficient computation of a new tunable measure
for network anonymity called d-k-anonymity. In addition to a naive and iterative algorithm, we
introduced a preprocessing step and two different heuristics. These methods allow us to measure
d-k-anonymity of large empirical networks with tens of thousands of nodes and millions of edges.

To analyze and understand the performance of the proposed methods, we performed experi-
ments on both three well-known graph models and a wide range of empirical networks. On both
types of networks, the use of the iterative approach with heuristics resulted in a significant speedup
of up to 100 or more for both graph models and empirical networks. The preprocessing step that
finds twin nodes, which are by definition structurally equivalent, by itself reduced running time
by around 8 times. The used heuristics had a smaller effect and lead to a further performance in-
crease of about 1.25 on average. Our experiments also showed that for graph models with high
densities all nodes are unique after d = 1 and hence no computational work is required in the later
iterations. However, for empirical networks this does not hold and work is still required in later
iterations, even for networks with a high density.
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While the introduced approaches demonstrated a significant speedup, we saw that the degree
configuration did not improve much on count. Hence, we do not expect more complicated heuris-
tics to be effective. However, there are still other possible avenues for further research. First, since
computing the canonical labeling of large neighborhoods is expensive but not often required, we
expect that the performance can extensively benefit from parallelization of the algorithm. Second,
as for a more complicated avenue of research, we expect that an iterative approach to canonical
labelings, which reuses results from the previous iteration, could be beneficial. Third, the proposed
measures can be extended to protect more complex types of networks that feature link direction-
ality, node and edge attributes, or temporal edges. Another avenue for future work could be to
measure the resulting data utility using various anonymization methods and a certain anonymity
measure. How to best balance the strictness of the chosen measure for anonymity and resulting
data utility may very well be highly dependent on a combination of the empirical network’s struc-
ture, the chosen network measure (e.g., centrality measures) or network process (e.g., influence or
epidemic spread models) that is being applied.

The presented algorithms for computing anonymity measures and experimental findings on
anonymity distributions have the potential to fuel the development of techniques to anonymize
networks. More broadly, the algorithms introduced in this work pave the way for privacy-aware
sharing of sensitive network data.

APPENDICES

A PROOFS

This appendix contains the proof of Theorem 4.2 on twin nodes presented and further discussed
in Section 4.4.

Proof. Given a graph G = (V ,E) and twin nodes v1,v2 ∈ V , then there exist at least two
automorphisms. First, γ such that ∀v ∈V : γ (v ) = v . Second, γ ′ such that ∀v ∈V (v�v1,v2 ) : γ ′(v ) = v ,
γ ′(v1) = v2 and γ ′(v2) = v1. Because of the twin node property defined in Definition 3.5 we know
that if ∀w s .t . {v1,w }∈E : {v2,w } ∈ E. Therefore, ∀w : {γ ′(v1),w } ∈ E also {v1,w } ∈ E. Logically, the
same holds for v2, and hence we can conclude that γ ′ is a valid automorphism, and given any pair
of twin nodes v1,v2 ∈ V , the nodes are thus in the same orbit. �

B SUPPLEMENTARY RESULTS: GRAPH MODELS RUNTIME

This appendix contains supplementary figures for Section 6.2. The figures contain the runtimes
for graph models with 10,000 nodes, and results per graph model, as reported in Figure 2.

Fig. 7. Runtime (vertical axis) of different algorithm configurations (indicated by color) on the three graph
models (indicated by line type), for increasing network density (horizontal axis). Each result is averaged over
10 generated graphs with 10,000 nodes.
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Fig. 8. Runtime (vertical axis) of different algorithm configurations (indicated by color) on the three graph
models (indicated by line type), for increasing network density (horizontal axis). Each result is averaged over
ten generated graphs. Results included are using the default setting (top row), with twin node preprocessing
step (middle row) and without cache (bottom row).
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C SUPPLEMENTARY RESULTS: CANONICAL LABELING BOTTLENECK NODES

Figure 9 presents supplementary results accompanying Section 6.3.2. The figure is similar to
Figure 6(a), but instead of covering all network datasets, presents results for the four largest
empirical networks.

Fig. 9. Sizes of d-neighborhoods (horizontal axis) plotted against the runtime to compute its canonical label-
ing (vertical axis) for four specific empirical networks.
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