
..

.

..

Discussion Paper

.

Error localization as a mixed
integer problemwith the
editrules package

The views expressed in this paper are those of the author and do not necessarily reϐlect the
policies of Statistics Netherlands.

.

2014 | 07

.

Edwin de Jonge
Mark van der Loo

.

.

Error localizaƟon is the problem of finding out which fields in raw data records contain
erroneous values. The editrules extension package for the R environment for staƟsƟcal
compuƟng was recently extended with a module that allows for error localizaƟon based on a
mixed integer programming formulaƟon (MIP). In this paper we describe the MIP formulaƟon
of the error localizaƟon problem for the case of numerical, categorical, or mixed numerical and
categorical datasets. We introduce a MIP formulaƟon that is a generalizaƟon of both linear as
well as categorical restricƟons. We discuss the numerical boundaries within which a MIP solver
generates a stable soluƟon and give direcƟons on changing them to your own needs. The new
module is benchmarked against a previously available module, which is based on a
branch-and-bound approach. The benchmark shows that the MIP-based approach is
significantly faster. Trade-offs between the branch-and-bound and MIP approaches are
discussed as well.

Statistics Netherlands | Discussion paper 2014|07 2

Contents

1 Introduction 4
1.1 Error localizaƟon 4
1.2 The editrules package 5

2 Error localization andmixed integer programming 6
2.1 Linear restricƟons 7
2.2 Categorical restricƟons 8
2.3 Mixed-type restricƟons 10

3 Numerical stability issues 12
3.1 A short overview of MIP-solving 13
3.2 Scaling numerical records 15
3.3 Seƫng numerical threshold values 15

4 Usage 17
4.1 Error localizaƟon 17
4.2 Fine-grained control opƟons 19

5 Benchmarks 20
5.1 Linear restricƟons 20
5.2 Categorical restricƟons 22
5.3 Mixed-type restricƟons 23

6 Conclusion 24

I Derivation of Equation 33 26

Statistics Netherlands | Discussion paper 2014|07 3

1 Introduction

Analyses of data are oŌen hindered by occurrences of incomplete or inconsistent raw data
records. The process of locaƟng and correcƟng such errors is referred to as data ediƟng, and it
has been esƟmated that NaƟonal StaƟsƟcs InsƟtutes may spend up to 40% of their resources on
this process (De Waal et al., 2011). Moreover, data oŌen must obey many cross-variable
consistency rules which significantly complicate the data ediƟng process. Indeed, Winkler (1999)
menƟons household surveys where records have to obey 250, 300 or even 750 user-defined
interrelated consistency rules. For these reasons, considerable aƩenƟon is paid to the
development of data ediƟng methods that can be automated.

1.1 Error localization

Automated as well as manual data ediƟng strategies for a data record typically consist of three
steps:

1. Find out which consistency rules a record violates;
2. Find out which fields in a record cause those violaƟons;
3. Replace the values in those fields with beƩer esƟmates, such that no rule is violated.

The second step is usually referred to as the error localizaƟon problem, which is the focus of the
current paper. Although it is widely recognized that data ediƟng is a necessary step in the
staƟsƟcal process, the amount of changes made to the data should obviously be minimized to
avoid introducing bias in esƟmaƟons based on the edited data. This then leads to the following
minimizaƟon problem.

Given a record of 𝑛 variables, subject to a number of possibly mulƟvariate
consistency rules. Find the smallest (weighted) subset of fields, such that aŌer
replacement of their values, the record violates no rules.

This minimizaƟon problem is named aŌer Fellegi and Holt (1976), who first formulated and
solved the problem for the case of categorical data. Error localizaƟon has been extensively
discussed in literature*), so we will suffice with a few remarks. First, the search space related to
the minimizaƟon problem grows exponenƟally with the number of fields, rendering a brute-force
approach that runs through all possible soluƟon candidates computaƟonally unfeasible. Second,
the problem is complicated by the occurrence of implied rules. That is, the soluƟon set must not
only allow the record to obey the original, user-defined set of rules, but also rules that are
logically or arithmeƟcally implied by the original set. To cope with these complicaƟons several
algorithmic approaches have been developed, two of which are worth menƟoning in this context.
The first is the branch-and-bound approach developed by De Waal and Quere (2003). The second
is an approach based on mixed-integer programming (MIP) described in De Waal et al. (2011).

*) See De Waal et al. (2011) and references therein.

Statistics Netherlands | Discussion paper 2014|07 4

1.2 The editrules package

Over the past decade the R staƟsƟcal environment has received a surge in popularity. As a
consequence it has been extended with many user-built packages that allow for staƟsƟcal
analyses of data. However, the number of packages specifically aimed at data ediƟng seems to
be somewhat limited, except possibly in the area of imputaƟon. The R package editrules (De
Jonge and van der Loo, 2013) was developed to help to bridge the gap between raw data
retrieval and data analysis with R. The main purpose of the package is to provide a convenient
interface to define data consistency rules (oŌen referred to as edit rules) in R and to confront
them with data. Furthermore, the package allows for basic rule manipulaƟon (deriving new
rules, finding inconsistencies, etc.) and for error localizaƟon funcƟonality. As such, the package
does not offer funcƟonality to correct data. Rather, it is aimed at idenƟfying the set of soluƟons
to an error localizaƟon problem: the second step menƟoned in the data ediƟng strategy above.
Previous developments of the package have been described in De Jonge and Van der Loo (2011);
Van der Loo and De Jonge (2011) and Van der Loo et al. (2011).

The editrules package offers a toolbox that allows users to work with numerical, categorical or
mixed-type data ediƟng rules. Up unƟl now, error localizaƟon was performed by an
implementaƟon of the branch-and-bound algorithm described by De Waal (2003). The main
disadvantage of this approach is that the branch-and-bound algorithm has 𝒪(2௡) worst-case
Ɵme and memory complexity, where 𝑛 is the number of variables occurring in a connected set of
rules. Moreover, the branch-and-bound solver is wriƩen in pure R, making it intrinsically slower
than a compiled language implementaƟon. The main advantages of this approach are the ease of
implementaƟon and the opportunity for users to exert fine-grained control over the algorithm.

As stated before, the error localizaƟon problem can be translated to a mixed-integer
programming problem. This allows us to reuse well-established results from the field of linear
and mixed-integer programming. Indeed, many advanced algorithms for solving such problems
have been developed, and in many cases implementaƟons in a compiled language are available
under a permissive license. In editrules, the solver of the lp_solve library (Berkelaar et al.,
2010) is used through R's lpSolveAPI package (Konis, 2011). The lp_solve library is wriƩen in
ANSI C and has been tried and tested extensively.

The strategy to solve error localizaƟon problems through this library from R therefore consists of
translaƟng the problem to a suitable mixed-integer programming problem, feeding this problem
to lpSolveAPI, and translaƟng the results back to an error locaƟon. It is necessary to disƟnguish
between:

– linear restricƟons on purely numerical data,
– restricƟons on purely categorical data, and
– condiƟonal restricƟons on mixed-type data,

since restricƟon for each data type calls for a different translaƟon to a MIP problem.

The second part of this paper will focus on how to translate these types of error localizaƟon
problems to a mixed-integer formulaƟon, paying aƩenƟon to both theoreƟcal and pracƟcal
details. In SecƟon 3 aƩenƟon is payed to numerical stability issues, SecƟon 4 is devoted to
examples in R code and SecƟon 5 describes benchmark results. Conclusions and a further
outlook are described in SecƟon 6.

Statistics Netherlands | Discussion paper 2014|07 5

2 Error localization andmixed
integer programming

A mixed integer programming problem is an opƟmizaƟon problem that can be wriƩen in the form

Minimize 𝑓(𝒛) = 𝒄்𝒛;
s.t. 𝑹𝒛 ≤ 𝒅, (1)

where 𝒄 is a constant vector and 𝒛 is a vector consisƟng of real and integer coefficients. One
usually refers to 𝒛 as the decision vector and the inner product 𝒄்𝒛 as the objecƟve funcƟon.
Furthermore, 𝑹 is a coefficient matrix and 𝒅 a vector of upper bounds. Formally, the elements of
𝒄, 𝑹 and 𝒅 are limited to the raƟonal numbers (Schrijver, 1998). This is never a problem in
pracƟce since we are always working with a computer representaƟon of numbers.

The namemixed-integer programming stems from the fact that 𝒛 contains conƟnuous as well as
integer variables. When 𝒛 consists solely of conƟnuous or integer variables, Problem (1) reduces
respecƟvely to a linear or an integer programming problem. An important special case occurs
when the integer coefficients of 𝒛may only take values from {0,1}. Such variables are oŌen called
binary variables. It occurs as a special case since defining 𝒛 to be integer and applying the
appropriate upper bounds yields the same problem.

Mixed integer programming is well understood and several soŌware packages are available that
implement efficient solvers. Most MIP soŌware support a broader, but equivalent, formulaƟon
of the MIP problem, allowing the set of restricƟons to include inequaliƟes as well as equaliƟes.
As a side note we menƟon that under equality restricƟons, soluƟons for the integer part of 𝒛 are
only guaranteed to exist when the equality restricƟons pertaining to the integer part of 𝒛 are
totally unimodular†). However, as we will see below, restricƟons on 𝒛 are always inequaliƟes in
our case, so this is of no parƟcular concern to us.

In this paper we reformulate Fellegi Holt error localizaƟon (Fellegi and Holt, 1976) for numerical,
categorical and mixed-type restricƟons in terms of MIP problems. The precise reformulaƟons of
the error localizaƟon problem for the three types of rules are different, but in each case the
objecƟve funcƟon is of the form

𝒘்𝜟, (2)

where𝒘 is a vector of posiƟve weights and 𝜟 a vector of binary variables, one for each variable
in the original record, that indicates whether its value should be replaced. More precisely, for a
record 𝒓 = (𝑟ଵ, 𝑟ଶ, … , 𝑟௡) of 𝑛 variables, we define

Δ௜ = ቊ 1 if the value of 𝑟௜ must be replaced
0 otherwise. (3)

This objecƟve funcƟon obviously meets the requirement that the minimal (weighted) number of
variables should be replaced. In general, a record may contain numeric, categorical or both types
of data and restricƟons may pertain to either one or both data types. To disƟnguish between the
data types below we shall write 𝒓 = (𝒗, 𝒙) where 𝒗 represents the categorical and 𝒙 the
numerical part of 𝒓.

†) This means that every square submatrix of the coefficient matrix𝑹 pertaining to the integer part of 𝒛 has determinant
0 or ±ଵ.

Statistics Netherlands | Discussion paper 2014|07 6

For an error localizaƟon problem, the restricƟons of Problem (1) consist of two parts, which we
denote

ቈ 𝑹ு

𝑹଴ ቉ 𝒛 ≤ ቈ 𝒅
ு

𝒅଴ ቉ . (4)

Here, the restricƟons indicated with 𝐻 represent a matrix representaƟon of the user-defined
(hard) restricƟons that the original record 𝒓must obey. The vector 𝒛 contains at least a numerical
representaƟon of the values in a record 𝒓 and the binary variables 𝜟. An algorithmic MIP-solver
will iteraƟvely alter the values of 𝒛 unƟl a soluƟon saƟsfying (4) is reached. To make sure that the
objecƟve funcƟon reflects the (weighted) number of variables altered in the process, the
restricƟons in 𝑹଴ serve to make sure that the values in 𝒛 that represent values in 𝒓 cannot be
altered without seƫng the corresponding value in 𝜟 to 1.

Summarizing, in order to translate the error localizaƟon problem for the special cases of linear,
categorical or condiƟonal mixed-type restricƟons to a general mixed integer problem, for each
case we need to properly define 𝒛, the restricƟon set 𝑹ு𝒛 ≤ 𝒅ு and the restricƟon set
𝑹଴𝒛 ≤ 𝒅଴.

2.1 Linear restrictions

For a numerical record 𝒙 taking values in ℝ௡, a set of linear restricƟons can be wriƩen as

𝑨𝒙 ≤ 𝒃, (5)

where in editrules, we allow the set of restricƟons to contain equaliƟes, inequaliƟes (≤) and
strict inequaliƟes (<). The formulaƟon of these edit rules is very close to the formulaƟon of the
original MIP problem of Eq. (1). The vector to minimize over is defined as follows:

𝒛 = (𝑥ଵ, 𝑥ଶ, … , 𝑥௡ , Δଵ, Δଶ, … , Δ௡). (6)

with the Δ௜ as in Eq. (3). The set of restricƟons 𝑹ு𝒛 ≤ 𝒅ு is equal to the set of restricƟons of
Eq. (5), except in the case of strict inequaliƟes. The reason is that while editrules allows the
user to define strict inequaliƟes (<), the lpsolve library used by editrules only allows for
inclusive inequaliƟes (≤). For this reason, strict inequaliƟes of the form 𝒂்𝒙 < 𝑏 are rewriƩen as
𝒂்𝒙 ≤ 𝑏 − 𝜖, with 𝜖 a suitably small posiƟve constant.

In the case of linear edits, the set of constraints 𝑹଴𝒛 ≤ 𝒅଴ consists of pairs of the form

𝑥௜ −𝑀Δ௜ ≤ 𝑥଴௜
−𝑥௜ −𝑀Δ௜ ≤ −𝑥଴௜ (7)

for 𝑖 = 1, 2, … , 𝑛. Here The 𝑥଴௜ are the actual observed values in the record and𝑀 is a suitably
large posiƟve constant allowing 𝑥௜ to vary between 𝑥଴௜ −𝑀 and 𝑥଴௜ +𝑀. It is not difficult to see
that if 𝑥௜ is different from 𝑥଴௜ then Δ௜ must equal 1. For, if we choose Δ௜ = 0 we obtain the set of
restricƟons

𝑥଴௜ ≤ 𝑥௜ ≤ 𝑥଴௜ (8)

which states that 𝑥௜ equals 𝑥଴௜

Statistics Netherlands | Discussion paper 2014|07 7

Example 1. Consider a record with business survey data, consisƟng of the variables Number of
staff 𝑝 and Personnel cost 𝑐. We have the rules 𝑝 ≥ 0, 𝑐 ≥ 0 and 𝑐 ≥ 𝑝. The laƩer rule expresses
the noƟon that for each staff member, more than one monetary unit is spent. Given two observed
values 𝑝଴ and 𝑐଴, disobeying one or more of the rules, the MIP problem for error localizaƟon has
the following form.

Minimize
(𝒙,𝜟)∈ℝమ×{଴,ଵ}మ

Δ௣ + Δ௖

s.t.

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 −1 0 0
−1 0 0 0
0 −1 0 0
1 0 −𝑀 0

−1 0 −𝑀 0
0 1 0 −𝑀

−1 1 0 −𝑀

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝑝
𝑐
Δ௣
Δ௖

⎤
⎥
⎥
⎦
≤

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
𝑝଴
−𝑝଴
𝑐଴
−𝑐଴

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

Here, the first three rows in the set of restricƟons represent the consistency rules while the other
rows connect the indicator variables 𝜟 = (Δ௣, Δ௖) with 𝑝 and 𝑐.

2.2 Categorical restrictions

Categorical records 𝒗 ∈ 𝐷 take values in a Cartesian product domain

𝐷 = 𝐷ଵ × 𝐷ଶ ×⋯× 𝐷௠ , (9)

where each 𝐷௜ is a finite set of categories for the 𝑖th categorical variable. The category names are
unimportant so we write

𝐷௜ = {1, 2, … , |𝐷௜|}. (10)

The total number of possible value combinaƟons |𝐷| is equal to the product of the |𝐷௜|.

A categorical edit is a subset 𝐹 of 𝐷 where records are considered invalid, and we may write

𝐹 = 𝐹ଵ × 𝐹ଶ ×⋯× 𝐹௠ , (11)

where each 𝐹௜ is a subset of 𝐷௜. It is understood that if a record 𝒗 ∈ 𝐹 then the record violates
the edit. Hence, categorical edits are negaƟvely formulated (they specify the region of 𝐷 where 𝒗
may not be) in contrast to linear edits which are posiƟvely formulated (they specify the region of
ℝ௡ where 𝒙must be). To be able to translate categorical edits to a MIP problem, we need to
specify 𝐹, such that if 𝒗 ∈ 𝐹 then 𝒗 saƟsfies 𝑒. Here, 𝐹 is the complement of 𝐹 in 𝐷, which can
be wriƩen as

𝐹 = 𝐹ଵ × 𝐷ଶ ×⋯× 𝐷௠

∪ 𝐷ଵ × 𝐹ଶ ×⋯× 𝐷௠ ∪⋯ ∪ 𝐷ଵ × 𝐷ଶ ×⋯× 𝐹௠ , (12)

where for each variable 𝑣௜, 𝐹௜ is the complement of 𝐹௜ in 𝐷௜. Observe that Eq. (12) states that if
at least one 𝑣௜ ∈ 𝐹௜, then 𝒗 saƟsfies 𝑒. Below, we will use this property and construct a linear
relaƟon that counts the number of 𝑣௜ ∈ 𝐹௜ over all variables.

Statistics Netherlands | Discussion paper 2014|07 8

To be able to formulate the Fellegi Holt-problem in terms of a MIP problem, we first associate
with each categorical variable 𝑣௜ a binary vector 𝒅 of which the coefficients are defined as follows
(see also Eq. (9)).

𝑑ఒ(𝑣௜) = ቊ 1 if 𝑣௜ = 𝜆
0 otherwise, (13)

where 𝜆 ∈ 𝐷௜. Thus, each element of 𝒅(𝑣௜) corresponds to one category in 𝐷௜. It is zero
everywhere except at the value of 𝑣௜ ∈ 𝐷௜. We will write 𝒅(𝒗) to indicate the concatenated
vector (𝒅(𝑣ଵ), … , 𝒅(𝑣௠)) which represents a complete record. Similarly, each edit can be
represented by a binary vector 𝒆 given by

𝒆 = ൮ሧ
ఒ∈ிభ

𝒅(𝜆), … , ሧ
ఒ∈ி೘

𝒅(𝜆)൲ , (14)

where we interpret 1 and 0 as TRUE and FALSE respecƟvely and the logical 'or' (∨) is applied
element-wise to the coefficients of 𝒅. The above relaƟon can be interpreted as staƟng that 𝒆
represents the valid value combinaƟons of variables contained in the edit.

To set up the hard restricƟon matrix 𝑹ு of Eq. (4), we first impose the obvious restricƟon that
each variable can take but a single value:

෍
ఒ∈஽೔

𝑑ఒ(𝑣௜) = 1, (15)

for 𝑖 = 1, 2, … ,𝑚. It is now not difficult to see that the demand (Eq. (12)) that at least one of the
𝑣௜ ∈ 𝐹௜ may be wriƩen as

𝒆்𝒅(𝒗) ≥ 1. (16)

EquaƟons (15) and (16) consƟtute the hard restricƟons, stored in 𝑹ு.

Using the binary vector notaƟon for 𝒗, and adding the Δ-variables that indicate variable change,
the vector to minimize over (Eq. (1)) is wriƩen as

𝒛 = (𝒅(𝒗), Δଵ, Δଶ, … , Δ௠). (17)

To ensure that a change in 𝑣௜ results in a change in Δ௜, the matrix 𝑹଴ contains the restricƟons

𝑑ఒబ(𝑣௜) = 1 − Δ௜ , (18)

for 𝑖 = 1, 2, … ,𝑚. Here, 𝜆଴ ∈ 𝐷௜ is the observed value for variable 𝑣௜. One may check, using
Eq. (13), that the above equaƟon can only hold when either 𝑣௜ = 𝜆଴ and Δ௜ = 0 (the original
value is retained) or 𝑣௜ ≠ 𝜆଴ and Δ௜ = 1 (the value changes).

Example 2. Consider a two-variable record from the census with the variablesMarital status𝑚
and Age class 𝑎. We have 𝒗 = (𝑚, 𝑎) ∈ 𝐷 where

𝐷 = 𝐷௠ × 𝐷௔ = {married, unmarried} × {child, adult}.

Using the binary representaƟon we see that a married adult is represented by the vector
𝒗଴ = (𝒅(married), 𝒅(adult)) = (1, 0, 0, 1). The rule that states ``A child cannot be married''
translates to

𝐹 = 𝐹௠ × 𝐹௔ = {married} × {child}

which gives 𝐹௠ = {unmarried} and 𝐹௔ = {adult}. Using Eq. (14) we get 𝒆 = (0, 1, 0, 1) and one
may verify that 𝒆்𝒅(married, child) = 0 and therefore invalid (see 16). For 𝒗଴, the MIP problem

Statistics Netherlands | Discussion paper 2014|07 9

for error localiaƟon now looks like this.

Minimize
(𝒗,𝜟)∈஽×{଴,ଵ}మ

Δ௠ + Δ௔ (19)

s.t.

⎡
⎢
⎢
⎢
⎣

1 0 1 0 0 0
1 1 0 0 0 0
0 0 1 1 0 0
1 0 0 0 −1 0
0 0 1 0 0 −1

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝑑married(𝑚)
𝑑unmarried(𝑚)
𝑑child(𝑎)
𝑑adult(𝑎)
Δ௠
Δ௔

⎤
⎥
⎥
⎥
⎥
⎦

≥
=
=
=
=

⎡
⎢
⎢
⎢
⎣

1
1
1
1
1

⎤
⎥
⎥
⎥
⎦

.

Here, the first row represents the edit rule, the second and third force that each variable can take
but one value (Eq. 16), and the last two rows connect the indicator variables Δ௠ and Δ௔ with the
value of𝑚 and 𝑎 (Eq. 18).

2.3 Mixed-type restrictions

Records 𝒓 containing both numerical and categorical data can be denoted as a concatenaƟon of
categorical and numerical variables taking values in 𝐷 × ℝ௡:

𝒓 = (𝑣ଵ, … , 𝑣௠ , 𝑥ଵ, … , 𝑥௡) = (𝒗, 𝒙), (20)

where 𝐷 is defined in Eq. (9). As stated above, categorical edits are usually defined negaƟvely as
a region of 𝐷 that is disallowed while linear edits define regions in ℝ௡ that are allowed. We may
choose a negaƟve formulaƟon of edits containing both variable types by defining a single edit 𝐸
as follows:

𝐸 = {𝒓 ∈ 𝐷 × ℝ௡ ∶ 𝒗 ∈ 𝐹 ∧ 𝒙 ∈ 𝑃}, (21)

where 𝐹 ⊆ 𝐷 and 𝑃 is a convex subset of ℝ௡ defined by a (possibly empty) set of 𝑘 linear
inequaliƟes of the form 𝒂்𝒙 > 𝑏. It is understood that if 𝒓 ∈ 𝐸, then 𝒓 violates the edit. An
example of a restricƟon pertaining to a categorical and a numerical variable is `A company
employs staff if and only if it has posiƟve personell cost', The corresponding edit can be denoted
as {no staff} × {𝑐 > 0}.

To obtain a posiƟve reformulaƟon, we first negate the set membership condiƟon and apply basic
rules of proposiƟon logic:

¬൫𝒗 ∈ 𝐹 ∧ 𝒙 ∈ 𝑃൯
⇔ ¬൫𝒗 ∈ 𝐹 ∧ 𝒂்ଵ𝒙 > 𝑏ଵ ∧ ⋯ ∧ 𝒂்௞𝒙 > 𝑏௞൯
⇔ 𝒗 ∈ 𝐹 ∨ 𝒂்ଵ𝒙 ≤ 𝑏ଵ ∨ ⋯ ∨ 𝒂்௞𝒙 ≤ 𝑏௞ . (22)

This then yields a posiƟve formulaƟon of 𝐸. That is, a record 𝒓 saƟsfies 𝐸 if and only if

𝒓 ∈ 𝐸 ⇔
௠

ሧ
௜ୀଵ

𝑣௜ ∈ 𝐹௜ ∨
௞

ሧ
௝ୀଵ

𝒂்௝ 𝒙 ≤ 𝑏௝ . (23)

Observe that this formulaƟon allows one to define mulƟple disconnected regions in 𝐷 × ℝ௡

containing valid records using just a single edit. For example, one may define a numeric variable
to be either smaller than 0 or larger than 1. This type of restricƟon cannot be formulated using
just linear numerical restricƟons.

Statistics Netherlands | Discussion paper 2014|07 10

This formulaƟon is both a generalizaƟon of linear inequality (Eq. 5) and categorical edits (Eq. 11).
Choosing 𝑘 = 0, we get 𝑃 = ℝ௡ and only the categorical part remains. Similarly, choosing
𝐹 = ∅, only the disjuncƟon of linear inequaliƟes remains. A system of linear equaƟons that must
simultaneously be obeyed like in Eq. (5) can be obtained by defining mulƟple edits 𝐸, each
containing a single linear restricƟon.

The definiƟon in Eq. (22) can be rewriƩen as a `condiƟonal edit' by using the implicaƟon
replacement rule from proposiƟonal logic which states that ¬𝑝 ∨ 𝑞 may be replaced by 𝑝 ⇒ 𝑞. If
we limit Eq. (22) to a single inequality, we obtain the normal form of De Waal (2003).

𝒗 ∈ 𝐹 ⇒ 𝒂்𝒙 ≤ 𝑏. (24)

If we choose 𝐹 = ∅ and leave two inequaliƟes we obtain a condiƟonal edit on numerical data:

𝒂்ଵ𝒙 > 𝑏ଵ ⇒ 𝒂்ଶ𝒙 ≤ 𝑏ଶ. (25)

WriƟng mixed-type edits in condiƟonal form seems more user-friendly as they can directly be
translated into an if statement in a scripƟng language. Finally, note that equaliƟes can be
introduced by defining pairs of edits like so:

ቊ 𝒗 ∈ 𝐹 ⇒ 𝒂்𝒙 ≤ 𝑏
𝒗 ∈ 𝐹 ⇒ −𝒂்𝒙 ≤ −𝑏. (26)

To reformulate Eq. (22) as a MIP problem, we first define binary variables ℓ௝ that indicate
whether 𝒙 obeys 𝒂்௞𝒙 > 𝑏:

ℓ௝ = ቊ 0 when 𝒂்௝ 𝒙 ≤ 𝑏௝
1 when 𝒂்௝ 𝒙 > 𝑏௝ (27)

Using the or-form of the set condiƟon (Eq. (22)) we can write the mixed-data edit as

𝒆்𝒅(𝒗) +
௞

෍
௝ୀଵ

(1 − ℓ௝) ≥ 1. (28)

Recall from Eqs. (14) and (13) that 𝒆 is the binary vector representaƟon of a categorical edit and
𝒅(𝒗) the binary vector representaƟon of a categorical record. In the above equaƟon, the `+' is
the arithmeƟc translaƟon of the logical `∨' operator in Eq. (22) that connects the categorical with
the linear restricƟons. When any of the two terms is posiƟve, record 𝑟 saƟsfies edit 𝐸.

Rules of this form consƟtute the user-defined part of the 𝑹ு part of the restricƟon matrix. To
explicitly idenƟfy ℓ௝ with the linear restricƟons we also add

𝒂்௝ 𝒙 ≤ 𝑏௝ +𝑀ℓ௝ , (29)

to 𝑹ு with𝑀 a suitably large posiƟve constant. Indeed, if ℓ௝ = 0, the inequality 𝒂்௝ 𝒙 ≤ 𝑏௝ is
enforced and Eq. 28 always is saƟsfied. When ℓ௝ = 1 the whole restricƟon can hold regardless of
whether the inequality holds. Finally, similar to the purely categorical case we need to add
restricƟons on the binary representaƟon of 𝒗 as in Eq. (15), so Eq. (15), Eq. (28) and Eq. (29)
consƟtute 𝑹ு.

There may be mulƟple mixed-type edits, each yielding one or more 𝑙 indicator variables for each
edit. The decision vector for the MIP problem may therefore be wriƩen as

𝒛 = (𝒅(𝒗), 𝒙, Δଵ, … , Δ௠ , … , Δ௠ା௡ , ℓଵ, … , ℓ௄), (30)

where 𝐾 is the total number of linear edits occurring in all the mixed-type edits. Finally, the 𝑹଴

matrix connecƟng the change indicator variables (Δ) with the actual recorded values consists of

Statistics Netherlands | Discussion paper 2014|07 11

the union of the restricƟons for categorical variables (Eq. (18)) and those for numerical variables
(Eq. (7)).

Example 3. We consider a record 𝒓 with the variables type of business 𝑡, which takes values in
𝐷௧ = {sp, other}, where ``sp'' stands for ``sole proprietorship'', personnel cost 𝑐 ∈ ℝ and number
of staff 𝑝 ∈ ℝ. Hence, we have 𝒓 = (𝑡, 𝑝, 𝑐) ∈ 𝐷௧ × ℝଶ. We impose the following rules on 𝒓:
𝑝 ≥ 0, 𝑐 ≥ 0, 𝑐 ≥ 𝑝 and if the business type is a sole proprietorship, then the number of staff
must equal zero. This may be expressed as (𝑡 ∈ {sp}) ⇒ (𝑝 = 0) or equivalently
(𝑡 ∈ {other}) ∨ (𝑝 = 0). For a record 𝒓଴ = (sp, 𝑝଴, 𝑐଴), the error localizaƟon problem takes the
following form.

Minimize
(𝒓,𝜟,ℓ)∈஽೟×ℝమ×{଴,ଵ}ర

Δ௧ + Δ௣ + Δ௖

s.t.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0 0 0 −1
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 −1 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 0 0 0 0 −𝑀
1 0 0 0 1 0 0 0
0 0 1 0 0 −𝑀 0 0
0 0 −1 0 0 −𝑀 0 0
0 0 0 1 0 0 −𝑀 0
0 0 0 −1 0 0 −𝑀 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑑sp(𝑡)
𝑑other(𝑡)

𝑝
𝑐
Δ௧
Δ௣
Δ௖
ℓ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≥
≥
≥
≥
=
>
=
≤
≤
≤
≤

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
0
1
0
1
𝑝଴
−𝑝଴
𝑐଴
−𝑐଴

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The first row in the restricƟon represents the mixed-type rule, translated as shown in Eq. (28).
Row six connects the indicator variable ℓ with the numerical edit in the consequent of
𝑡 ∈ {sp} ⇒ (𝑝 = 0). Rows two, three and four represent the numerical edits limiƟng values of 𝑝
and 𝑐. Row five forces 𝑡 to have only one value and row seven connects the value of 𝑡 with that of
Δ௧. Finally, rows eight to eleven connect the numerical variables with the corresponding change
indicators.

3 Numerical stability issues

An error localizaƟon problem, in its original formulaƟon, is an opƟmizaƟon problem over 𝑛 binary
decision variables that indicate which variables in a record should be adapted. Depending on the
type of rules, its reformulaƟon as a MIP problem adds at least 𝑛 variables and 2𝑛 restricƟons.
Moreover, the reformulaƟon as a MIP problem introduces a constant𝑀, the value of which has
no mathemaƟcal significance but for which a value must be chosen in pracƟce. Because of
limitaƟons in machine accuracy, which is typically on the order of 10ିଵ଺, the range of problems
that can be solved is limited as well. In parƟcular, MIP problems that involve both very large and
very small numbers in the objecƟve funcƟon and/or the restricƟon matrix may yield erroneous
soluƟons or become numerically unfeasible. Indeed, the manual of lp_solve (Berkelaar et al.,
2010) points out that `[...] to improve stability, one must try to work with numbers that are
somewhat in the same range. Ideally in the neighborhood of 1'. The following subsecƟons point
out a number of sources of numerical instabiliƟes and provides ways to handle them.

Statistics Netherlands | Discussion paper 2014|07 12

3.1 A short overview of MIP-solving

Consider a set of linear restricƟons on numerical data of the form 𝑨𝒙 ≤ 𝒃, where we assume
𝒃 ≥ 𝟎 and the restricƟons consist solely of inequaliƟes (≤). In pracƟce, these restricƟons will not
limit the type of linear rules covered by this discussion, since it can be shown that all linear rules
can be brought to this form, possibly by introducing dummy variables [see e.g. Schrijver (1998);
Bradley et al. (1977)]. Furthermore, suppose we have a record 𝒙଴ ≥ 𝟎 which doesn't obey the
restricƟons. The MIP formulaƟon of the error localizaƟon problem can be wriƩen as follows.

Minimize 𝑓 = 𝒘்𝜟

s.t.
⎡
⎢
⎢
⎣

𝑨 𝟎
𝟙 −𝑴

−𝟙 −𝑴
𝟎 𝟙

⎤
⎥
⎥
⎦
ቈ 𝒙
𝜟 ቉ ≤

⎡
⎢
⎢
⎣

𝒃
𝒙଴
−𝒙଴
𝟏

⎤
⎥
⎥
⎦
, (31)

and 𝒙, 𝜟 ≥ 𝟎. Also, 𝟙 denotes the unit matrix, 𝟏 a vector with all coefficients equal to 1 and
𝑴 = 𝟙𝑀. The last row is added to force 𝜟 ≤ 𝟏. This is necessary because we will iniƟally treat
the binary variables Δ௝ as if they are real numbers in the range [0, 1].

The lp_solve library uses an approach based on the revised Phase I - Phase II simplex algorithm
to solve MIP problems. In this approach every inequality of Eq. (31) is transformed to an equality
by adding dummy variables: each row 𝒂்𝒙 ≤ 𝑏 is replaced by 𝒂்𝒙 + 𝑠 = 𝑏, with 𝑠 ≥ 0.
Depending on the sign of the inequality, the extra variable 𝑠 is called a slack or surplus variable.
In Eq. (31) there are four sets of restricƟons (rows). We therefore need to add four sets of surplus
and slack variables (columns) in order to rewrite the whole system in terms of equaliƟes.

Note that aŌer this transformaƟon, the whole problem including the cost funcƟon is wriƩen in
terms of equaliƟes. It is customary to organize this set of equality objecƟve funcƟon in a single
tableau notaƟon as follows.

⎡
⎢
⎢
⎢
⎣

1 𝟎 −𝒘் 𝟎 𝟎 𝟎 𝟎 0
0 𝑨 𝟎 𝟙 𝟎 𝟎 𝟎 𝒃
0 𝟙 −𝑴 𝟎 𝟙 𝟎 𝟎 𝒙଴
0 𝟙 𝑴 𝟎 𝟎 −𝟙 𝟎 𝒙଴
0 𝟎 𝟙 𝟎 𝟎 𝟎 𝟙 𝟏

⎤
⎥
⎥
⎥
⎦

. (32)

Here, the first row and column represents the cost funcƟon. Columns two and three correspond
to the original set of variables in Eq. (31) while columns four to seven correspond to sets of slack
and surplus variables. The final column contains the constant vector.

A tableau representaƟon shows all the numbers that are relevant in an LP-problem at a glance.
By examining how LP-solvers typically manipulate these numbers we gain some insight into how
and where numerical stability issues may arise.

Since the tableau represents a set of linear equaliƟes, it may be manipulated as such. In fact, the
simplex method is based on performing a number of cleverly chosen Gauss-Jordan eliminaƟon
steps on the tableau. For a complete discussion the reader is referred to one of the many
textbooks discussing it (e.g. Bradley et al. (1977)), but in short the Phase I - Phase II simplex
algorithm consists of the following steps.

Phase I: Repeatedly apply Gauss-Jordan eliminaƟon steps (called pivots) to derive a decision
vector that obeys all restricƟons. A vector obeying all restricƟons is called a basic soluƟon.

Phase II: Repeatedly apply pivots to move from the iniƟal non-opƟmal soluƟon to the soluƟon
that minimizes the objecƟve funcƟon 𝑓.

Statistics Netherlands | Discussion paper 2014|07 13

In Phase I, a decision vector (𝒙, 𝜟, 𝒔) (with 𝒔 the vector of slack and surplus variables) is derived
that obeys all restricƟons. The precise algorithm need not be described here. It involves adding
again extra variables where necessary and then manipulaƟng the system of equaliƟes
represented by the tableau so that those extra variables are driven to zero. The binary variables
𝜟 are first treated as if they are real variables. In the Appendix it is shown in detail how an iniƟal
soluƟon for Eq. (32) can be found, here we just state the result of a Phase-I operaƟon:

⎡
⎢
⎢
⎢
⎣

1 𝒘்𝑴ିଵ 𝟎 𝟎 𝟎 −𝒘்𝑴ିଵ 𝟎 𝒘்𝑴ିଵ𝒙଴
0 𝑨 𝟎 𝟙 𝟎 𝟎 𝟎 𝒃
0 2𝟙 𝟎 𝟎 𝟙 −𝟙 𝟎 2𝒙଴
0 𝑴ିଵ 𝟙 𝟎 𝟎 −𝑴ିଵ 𝟎 𝑴ିଵ𝒙଴
0 −𝑴ିଵ 𝟎 𝟎 𝟎 𝑴ିଵ 𝟙 𝟏 −𝑴ିଵ𝒙଴

⎤
⎥
⎥
⎥
⎦

. (33)

This tableau immediately suggests a valid soluƟon: it is easily confirmed by matrix mulƟplicaƟon
that the vector (𝒙, 𝜟, 𝒔) = (𝟎, 𝒙଴𝑴ିଵ, [𝒃, 2𝒙𝟎, 𝟎, 𝟏 −𝑴ିଵ𝒙଴]) obeys all restricƟons. The above
form of a tableau, where the restricƟon matrix contains a (column permutaƟon of) the unit
matrix, the right-hand-side has only non-negaƟve coefficients, and the cost vector equals zero for
the columns above the unit matrix is called the canonical form.

Now, a pivot operaƟon consists of the following steps:

1. Select a posiƟve element 𝑅௜௝ from the restricƟon matrix. This is called the pivot element.
2. MulƟply the 𝑖th row by 𝑅ିଵ௜௝ .
3. Subtract the 𝑖th row, possibly aŌer rescaling, from all other rows of the tableau such that

their 𝑗th column equals zero.

The result of a pivot operaƟon is again a tableau in canonical form but with possibly a different
value for the cost funcƟon. The simplex algorithm proceeds by selecƟng pivots that decrease the
cost funcƟon unƟl the minimum is reached or the problem is shown to be unfeasible.

Up unƟl this point, we have treated the binary variables 𝜟 as if they were real variables, so the
tableaux discussed above do not represent soluƟons to our original problem which demands that
all Δ௝ are either 0 or 1. In the lp_solve library this is solved as follows.

1. For each opƟmized value Δ∗௝ test whether it is 0 or 1. If all Δ∗௝ are integer, we have a valid
soluƟon of objecƟve value𝒘்𝜟 and we are done.

2. For the first variable Δ∗௝ that is not integer, create two sub-models: one where the minimum
value of Δ௝ equals 1 and one where the maximum value of Δ௝ equals 0.

3. OpƟmize the two sub-models. If soluƟons exist, the result will contain an integer Δ௝.
4. For the sub-models that have a soluƟon and whose current objecƟve value does not exceed

that of an earlier found soluƟon, return to step 1.

The above branch-and-bound approach completes this overview. The discussion of pivot and
branch-and-bound operaƟons has so far been purely mathemaƟcal: no choices have been made
regarding issues such as how to decide when the floaƟng-point representaƟon of a value is
regarded zero or how to handle badly scaled problems. Do note however, that in the course of
going from Phase-I to Phase-II, the LP-solver is handling numbers that may range from𝑀ିଵ to𝑀
which typically differ many orders of magnitude

Statistics Netherlands | Discussion paper 2014|07 14

3.2 Scaling numerical records

In the MIP formulaƟon of error localizaƟon over numerical records under linear restricƟons,
Eq. (7) restricts the search space around the original value 𝑥଴ to |𝑥 − 𝑥଴| ≤ 𝑀. This restricƟon
may prohibit a MIP solver from finding the actual minimal set of values to adapt or even render
the MIP-problem unsolvable. As an example, consider the following error localizaƟon problem
on a two-variable record.

ቊ 𝑥ଵ ≥ 𝑥ଶ
𝒙଴ = (10଺, 10ଽ).

Obviously, the record can be made to obey the restricƟon by mulƟplying 𝑥଴ଵ by 10ଷ or by dividing
𝑥଴ଶ by the same amount. However, in editrules the default value for𝑀 = 10଻ < 10ଽ − 10଺
which renders the corresponding MIP problem unsolvable. PracƟcal examples where such errors
occur is when a value is recorded in the wrong unit of measure (e.g. in € instead of k€.).

It is therefore advisable to remove such unit-of-measure errors prior to error localizaƟon‡) and to
express numerical records on a scale such that all |𝑥଴| ≪ 𝑀. Note that under linear restricƟons
(Eq. 5) one may always apply a scaling factor 𝑘 > 0 to a numerical record 𝒙 by replacing 𝑨𝒙 ≤ 𝒃
with 𝑨(𝑘𝒙) ≤ 𝑘𝒃. In the above example, one may replace 𝒙଴ by 10ି଺𝒙଴ for the purpose of error
localizaƟon. If 𝒃 = 𝟎 and the coefficients of 𝒙 do not vary over many orders of magnitude, such a
scaling will suffice to numerically stabilize the MIP problem.

3.3 Setting numerical threshold values

On most modern computer systems real numbers are represented in IEEE (2008) double
precision format. In essence, real numbers are represented as rounded-off fracƟons so
arithmeƟc operaƟons on such numbers always result in loss of precision and round-off errors.
For example, even though mathemaƟcally we have 0.7 − 0.5 = 0.2, in the floaƟng point
representaƟon (denoted fl(⋅)) we have fl(0.7) − fl(0.5) ≠ fl(0.2). In fact, the difference is about
0.56 ⋅ 10ିଵ଺ in this case.

This means that in pracƟce one cannot rely on equality tests to determine whether two floaƟng
point numbers are equal. Rather, one considers two numbers 𝑣 and 𝑤 equal when
| fl(𝑣) − fl(𝑤)| is smaller than a predefined tolerance. For this reason lp_solve comes with a
number of predefined tolerances. These tolerances have default values but these may be altered
by the user.

The tolerances implemented by lp_solve are summarized in Table 3.1. The value of epspivot
is used to determine whether an element of the restricƟon matrix is posiƟve so it may be used as
a pivoƟng element. Its default value is 2 ⋅ 10ି଻, but note that aŌer Phase I, our restricƟon matrix
contains elements on the order of𝑀ିଵ = 10ି଻. For this reason, the value of epspivot is
lowered in editrules by default, but users may override these seƫngs. For the same reason,
the value of epsint, which determines when a value for one of the 𝜟௝ can be considered integer
is lowered in editrules as well. The other tolerance seƫngs of lp_solve: epsb (to test if the
right-hand-side of the restricƟons differ from 0), epsd (to test if two values of the objecƟve

‡) Methods for detecƟng such errors exist, see for example De Waal et al. (2011), Chapter 2. In fact, the principle of
minimal change is not applicable here since a beƩer value can be deduced from the cause of the error.

Statistics Netherlands | Discussion paper 2014|07 15

Table 3.1 Numerical parameters for MIP based error localization.
Default value

Parameter lp_solve editrules meaning
M − 10଻ set bounds so 𝒙 ∈ 𝒙଴ ±𝑀
eps − 10ିଷ translate 𝑥 < 0 to 𝑥 ≤ 𝜀
epspivot 2 ⋅ 10ି଻ 10ିଵହ test if pivot element 𝑅௜௝ > 0
epsint 10ି଻ 10ିଵହ test if Δ௝ ∈ ℕ
epsb 10ିଵ଴ 10ିଵ଴ test if 𝑏௜ > 0
epsd 10ିଽ 10ିଽ test if obj. values |𝑓 − 𝑓ᇱ| > 0 during simplex
epsel 10ିଵଶ 10ିଵଶ test if other numbers ≠ 0
mip_gap 10ିଵଵ 10ିଵଵ test if obj. values |𝑓 − 𝑓ᇱ| > 0 during B&B

funcƟon differ), epsel (all other values) and mip_gap (to test whether a bound condiƟon has
been hit in the branch-and-bound algorithm) have not been altered.

The limited precision inherent to floaƟng point calculaƟons imply that computaƟons get more
inaccurate as the operands differ more in magnitude. For example, on any system that uses
double precision arithmeƟc the difference fl(1) − fl(10ିଵ଻) is indisƟnguishable from fl(1). This
then, leads to two contradictory demands on our translaƟon of an error localizaƟon problem to a
MIP problem. On one hand, one would like to set𝑀 as large as possible so the ranges 𝑥଴௝ ±𝑀
contain a valid value of 𝑥௝. On the other hand, large values for𝑀 imply that MIP problems such
as Eq. (31) may become numerically unstable.

In pracƟce, the tableau used by lp_solvewill not be exactly the same as represented in Eq. (33).
Over the years, many opƟmizaƟons and heurisƟcs have been developed to make solving linear
programming problems fast and reliable, and several of those opƟmizaƟons have been
implemented in lp_solve. However, the tableau of Eq. (33) does fundamentally show how
numerical instabiliƟes may occur: the tableau simultaneously contains numbers on the order of
𝑀ିଵ and on the order of 𝒙଴. It is not at all unlikely that the two differ in many orders of
magnitude.

The above discussion suggests the following rules of thumb to avoid numerical instabiliƟes in
error localizaƟon problems.

1. Make sure that elements of 𝒙଴ are expressed in units such that 𝑨, 𝒃 and 𝒙 are on the order of
1 wherever possible.

2. Choose a value of𝑀 appropriate for 𝒙଴.
3. If the above does not help in stabilizing he problem, try lowering the numerical constants of

Table 3.1.

In our experience, the seƫngs denoted in Table 3.1 have performed well in a range of problems
where elements of 𝑨 and 𝒃 are on the order of 1 and values of 𝒙଴ are in the range [1, 10଼].
However, these seƫngs have been made configurable so users may choose their own seƫngs as
needed.

Statistics Netherlands | Discussion paper 2014|07 16

4 Usage

In the editrules package, edits can be defined with the editset funcƟon. For example, the
command

> E <- editset(expression(
+ x + y == z
+ , if (x > y) y > 0
+))

defines two edits on the variables 𝑥, 𝑦 and 𝑧 and stores them in an object called E. Here, E is an
object of type editset and it can be used to store and manipulate linear (in)equality edits, edits
on categorical data as well as edits on mixed-type data. Besides editset there are specialized
funcƟons called editmatrix and editarray which can be used to define rules on purely
numerical or purely categorical data respecƟvely. Edits are defined in basic R syntax; one may use
mulƟplicaƟon, addiƟon, if-else statements, logical operators and the %in% operator for set
inclusion on categorical variables.

Besides defining rules on the command line, as in the example above, one may store the rules in
a text file and read the rules into R using the editfile funcƟon.

> E <- editfile("myedits.txt")

Here, myedits.txt is the name of a texƞile containing the edits. The resulƟng object is by
default of class editset. If the extra argument type="num" or type="cat" is passed, only
numerical or categorical edits are read from the file. For a further discussion of the funcƟons
menƟoned here we refer the reader to the technical manual that is included with the soŌware.
Also see the papers of Van der Loo and De Jonge (2011, 2012) for a precise descripƟon of the
edit-definiƟon syntax.

4.1 Error localization

The main interface to error localizaƟon funcƟonality is the localizeErrors funcƟon. The
funcƟon accepts editrules in the form of an editset, editmatrix or editarray object, and a
data set in the form of a data.frame. By default the funcƟon localizes errors using the
branch-and-bound algorithm. One may switch to the MIP-based approach by seƫng the
parameter method="mip" as in the following example.

> E <- editmatrix("x <= y")
> dat <- data.frame(x = c(10, 3), y = c(1, 5))
> el <- localizeErrors(E, dat, method = "mip")

The object returned by localizeErrors contains the error locaƟons as well as some details on
how the algorithm ran. The error locaƟons are stored in a boolean array called adapt which can
be accessed as follows.

> el$adapt
x y

1 TRUE FALSE
2 FALSE FALSE

Statistics Netherlands | Discussion paper 2014|07 17

Here, the array has dimension 2 × 2 since the input data set consisted of two records with two
variables. Here, the result indicates for the first record that by altering the value for 𝑥, the record
can be corrected to obey the edit rule stored in E. For the second record, no alteraƟons are
necessary.

Details on the error localizaƟon procedure are stored in a data.frame called status, which can
be accessed as follows.

> el$status
weight degeneracy user system elapsed maxDurationExceeded memfail

1 1 NA 0.04 0 0.05 FALSE FALSE
2 0 NA 0.02 0 0.01 FALSE FALSE

The status data.frame contains one record of informaƟon for each record in the input data. The
column weight contains the value of the objecƟve funcƟon as defined by Eq. (2). The Ɵme it
took to perform the calculaƟon is subdivided into user, system and elapsed Ɵme, where the laƩer
corresponds to the actual Ɵme that has passed on the clock. The boolean variable
(maxDurationExceeded) indicates whether the Ɵme limit for finding a soluƟon was exceeded.
There are two status columns that have no relevance when the error localizaƟon method is MIP.
First, the indicator memfail can only be set to TRUE when the branch-and-bound algorithm is
used. It indicates that perhaps the opƟmal soluƟon could not be found because of memory
limitaƟons. Second, and more importantly, the degeneracy parameter is not set when
method="mip". This parameter indicates how many equivalent soluƟons there are to each error
localizaƟon problem. Contrary to the branch-and-bound method for error localizaƟon, the
MIP-based approach does not return this informaƟon.

The output of localizeErrors can be controlled with two parameters. Most importantly,
posiƟve weights for each variable and opƟonally for each record can be set; variables with lower
weights aƩached to them are more likely to be part of a chosen soluƟon which is otherwise
degenerate. Furthermore, a maximum search Ɵme per record can be specified, the default
seƫng being 10 minutes. Finally, the opƟonal parameter lpcontrolmay contain a list of
parameters to be passed to lpSolveAPI. The default seƫngs can be listed as follows

> options("er.lpcontrol")
$er.lpcontrol
NULL

These opƟons are precisely the values that differ from lpSolve's default seƫngs listed in Table
3.1. Changing or adding opƟons can be done either by passing the lpcontrol parameter to
localizeErrors, in which case it is only used for the current error localizaƟon problem. To
adapt a parameter for the remainder of the running R-session or unƟl the opƟon is reset one can
use R's options funcƟon. For example, to alter the epsb parameter through localizeErrors,
one may use either of the two calls below.

> localizeErrors(E, dat, lpcontrol = c(epsb=1e-12, options("er.lpcontrol")))
> options(er.lpcontrol = c(options("er.lpcontrol"), epsb=1e=12))

The important thing to note is that it is up to the user to merge new opƟons with exisƟng ones
since lpcontrol completely overwrites the default seƫngs. A precise descripƟon of possible
opƟons is also given in the reference manual of lpSolveApi.

Statistics Netherlands | Discussion paper 2014|07 18

4.2 Fine-grained control options

For users who wish to exert more fine-grained control on the MIP-solver or who wish to interface
editrules with another MIP-solving engine, two lower-level funcƟonaliƟes have been exposed
to the user.

The first is errorLocalizer_mip. This funcƟon takes a set of edit rules in the form of an
editset, editmatrix or editarray and a single data record in the form of a named list.

> L <- errorLocalizer_mip(E, list(x = 10, y = 1))

Here, errorLocalizer_mip translates the error localizaƟon problem for a single record to a
MIP problem, feeds it to lpSolveAPI and returns all the results in a list. The list contains two
extra pieces of informaƟon not available in the output of localizeErrors. The first is a
parameter called x_feasible, containing a record that actually obeys all the edit rules.

> L$x_feasible
$x
[1] 1

$y
[1] 1

The second parameter is called lp. This is an object of class lpExtPtr which points to an object
of lpSolveApi, stored outside of R's memory. It contains precise informaƟon on the definiƟon
of the MIP problem as interpreted by lpSolveAPI. It can be manipulated or exported to a text
file using write.lp of the lpSolveAPI package.

The second funcƟonality entails the funcƟons as.mip and as.lp.mip. The funcƟon as.mip
allows users to translate the combinaƟon of a set of editrules and a data record to a MIP
problem.

> mip <- as.mip(E, list(x = 10, y = 1))
> print(mip)
num1 : x <= y
x0 : x <= 1e+07*delta.x + 10
y0 : y <= 1e+07*delta.y + 1
x0_1 : 10 <= 1e+07*delta.x + x
y0_1 : 1 <= 1e+07*delta.y + y
objective function = min: 1*delta.x + 1*delta.y

The object returned by as.mip can be used to inspect how editrules translates an error
localizaƟon problem to a MIP problem. The interested reader may want to compare the above
representaƟon with Eqs. (2), (6) and (7).

This representaƟon of the MIP problem can be translated to a form that is suited for solving with
lpSolveAPI.

> lp <- as.lp.mip(mip)

The lp object can directly be used as input for lpSolveAPI or wriƩen to disk with write.lp as
follows.

> write.lp(lp, file = "myLPfile.lp")

This command produces a text file that is wriƩen in a syntax understood by the lp_solve
commandline program. lp_solve also has faciliƟes to translate this syntax to other formats
allowing export to other LP-solvers, including some commercial ones.

Statistics Netherlands | Discussion paper 2014|07 19

5 Benchmarks
The branch and bound andMIP-based algorithms for error localizaƟon differ in consumpƟon of
both memory and computaƟonal Ɵme. The performance of error localizaƟon methods depends
on the number of variables, the number of erroneous fields, the number of violated restricƟons,
and the total number of restricƟons.

Below we describe benchmarks based edit sets which can be systemaƟcally extended to
encompass more variables. The edit sets were designed so that syntheƟc records can be created
where the size of the soluƟon to the error localizaƟon problem (the minimal number of fields to
alter so the record can be made consistent) can be easily controlled as well. This then gives an
impression of computaƟonal Ɵme consumed by the MIP and branch-and-bound approaches as a
funcƟon of the number of variables/edits and the number of erroneous fields.

Benchmarking the two approaches is further complicated by the fact that performance of
especially the branch-and-bound algorithm is strongly affected by the order in which variables
are treated by the algorithm. Indeed, preliminary tests showed that if the erroneous variables
are treated first (which may be achieved by seƫng appropriate reliability weights), performance
of the branch-and-bound method is largely on par with that of the MIP approach. If variables are
ordered such that erroneous variables are treated halfway, or at the end of the variable set, the
branch-and-bound method performs much slower than the MIP method. Below, we report on
benchmarks where errors were injected into variables which were posiƟoned around the center
of the record. This mimics the case when there is no knowledge on the reliability of the variables.

5.1 Linear restrictions

The edits used in this benchmark form a balance system. Balance systems occur for example in
energy or business staƟsƟcs where main variables (total energy consumpƟon, total turnover) are
the sum of several other variables. Moreover, these main variables are also connected by linear
restricƟons (total energy producƟon equals total energy consumpƟon). In balance systems
variables are therefore connected through a tree-like structure where the value corresponding to
a node equals the sum of its child node values.

In our benchmark we generate a balance system on 2𝑛 + 1 variables. Here, the restricƟons
connect the variables through a binary tree where the value of a node is the sum of its two child
node values. The value of the top node is restricted to be non-negaƟve and always at least as
large as any other value.

𝑥ଵ = 𝑥ଶ + 𝑥ଷ
⋮

𝑥௡ = 𝑥ଶ௡ + 𝑥ଶ௡ାଵ
𝑥ଵ ≥ 0
𝑥ଵ ≥ 𝑥௜, 𝑖 = 2, 3, … 2𝑛 + 1

This edit set is fully connected and completely fixed by choosing an 𝑛 > 0. The 𝑥ଵ ≥ 0 and
𝑥ଵ ≥ 𝑥௜ for all 2 ≤ 𝑖 ≤ 2𝑛 + 1 implies that all 𝑥௜ ≥ 0. To see this, observe that since 𝑥ଵ ≥ 0 and

Statistics Netherlands | Discussion paper 2014|07 20

1

10

2

3

4

5

6

7

89

0s

50s

100s

150s

0 25 50 75 100
number of variables

method

bb

mip

Figure 5.1 Linear edits, each corresponds to a different number of errors

and 𝑥ଵ ≥ 𝑥ଷ, we cannot have 𝑥ଶ < 0 without having 𝑥ଷ > 𝑥ଵ, which violates the restricƟons
saying that 𝑥ଵ must be larger than or equal to 𝑥௜, 𝑖 > 1. This reasoning applies recursively to all
𝑥௜ because of the chained sum-rules.

One soluƟon to this system is the zero vector (𝑥ଵ, … , 𝑥ଶ௡ାଵ) = (0,… , 0). An error can be
introduced in the data by seƫng some 𝑥௜ to −1. Because of the implied nonnegaƟvity
contstraint, the number of variables in the opƟmal error localizaƟon soluƟon is exactly equal to
the number of 𝑥௜ set to −1. The benchmark was performed for balance systems with 1 to 101
variables (𝑛 = 0 to 50). For each system records with 1 to 10 errors were generated.

Figure 5.1 shows the Ɵme of error localizaƟon for increasing number of variables and increasing
number of errors, both for the branch-and-bound method and the MIP method. The
branch-and-bound method hits the `exponenƟal wall' around 30 variables and 5 errors or 20
variables with 10 errors, showing reasonable performance only when the number of errors is 2
or less. The branch-and-bound algorithm was broken off when no soluƟon was found in less than
10 minutes which occurred at problems with more than 50 variables and 4 errors. In contrast,
the MIP-based approach performs well (under a few seconds) for all problems tested here.

We cauƟon the reader to conclude that the MIP approach is beƩer performing in all
circumstances: when a good set of reliability weights can be determined, variables that are most
likely to be erroneous can be treated early on by the algorithm, yielding a considerable
performance boost. In such a case, the opƟmal soluƟon is found first by the algorithm and
branches leading to subopƟmal soluƟons can be quickly rejected. However, in the generic case
where no reliability weights can be derived with great confidence, the MIP-approach is obviously
beƩer performing.

Statistics Netherlands | Discussion paper 2014|07 21

1

10

2

3

4

5

6
7

8

9

0s

50s

100s

150s

0 10 20 30 40 50
number of variables

bb

mip

Figure 5.2 Categorical edits: each line corresponds to a different number of errors.

5.2 Categorical restrictions

For this benchmark we use a chain of interconnected edits:

𝑣ଵ == TRUE

if (𝑣ଵ==TRUE) 𝑣ଶ == TRUE

⋮
if (𝑣௡ିଵ==TRUE) 𝑣௡ == TRUE.

Examples of such edit chains occur in pracƟce, for example: ifmarried==TRUE then
adult==TRUE and if adult==TRUE then allowed to drive a car==TRUE. Here, we demand that
𝑣ଵ == TRUE which forces the only soluƟon to this editset to be (𝑣ଵ, … , 𝑣௡) = (TRUE, … , TRUE).
An error in the data can therefore be introduced by seƫng on of the 𝑣௜ 's to FALSE.

Benchmarks have been performed for systems with 𝑛 = 1 to 𝑛 = 50 variables. For each system
records with 1 to 10 errors were created. Again, the errors were introduced in variables with
intermediate posiƟons in the record.

Figure 5.2 shows Ɵme spent on error localizaƟon for the branch-and-bound and MIP-approaches
as a funcƟon of number of variables and errors. Again, the MIP-based algorithm outperforms the
branch-and-bound approach in nearly every case. Problems with more than 30 variables and 4
errors yield no soluƟon with the branch-and-bound approach within 10 minutes causing
calculaƟons to be terminated. The same cauƟon holds here as for the benchmarks on linear edits
described above: carefully chosen reliability weights can improve performance of the
branch-and-bound method. Without such knowledge however, MIP is the beƩer generic choice
when performance is important.

Statistics Netherlands | Discussion paper 2014|07 22

1

10

2

3

4

5

6

7

8
9

0s

50s

100s

150s

0 10 20 30 40 50
variables

bb

mip

Figure 5.3 Mixed type edits: each line represents a different number of errors.

5.3 Mixed-type restrictions

We use a chain of interconnected restricƟons defined as follows:

𝑥ଵ ≥ 0
if (𝑥ଵ ≥ 0) 𝑥ଶ ≥ 0

⋮
if (𝑥ேିଵ ≥ 0) 𝑥ே ≥ 0.

Here, all 𝑥௜ are numeric but since the condiƟonal restricƟons are internally modeled using
dummy boolean variables, it serves as a model for mixed-type variable restricƟons. Examples of
such chains do occur in pracƟce, for example the following restricƟon is oŌen found in the
context of business staƟsƟcs: if number of employees > 0 then amount of salary payed > 0.

One viable soluƟon for this system of edits is the zero vector (𝑥௜ , … , 𝑥௡) = (0,… , 0). Note that
the restricƟon set implies that 𝑥௜ ≥ 0 for 𝑖 = 1…𝑁. An error can be injected by seƫng one or
more 𝑥௜ = −1. The set of edits is engineered such that if 𝑘 variables are set to −1, then 𝑘
variables must be adapted to re-establish a viable soluƟon. However, seƫng 𝑘 variables to −1
does not mean that 𝑘 explicitly defined edits are violated. For example, it is easily confirmed that
for 𝑛 = 4 and 𝒙 = (0, 0, −1,−1) only the third (out of five) edit is violated. However both 𝑥ଷ
and 𝑥ସ need to be adapted in order to repair the record.

The benchmark was performed with 1 to 50 variables and 1 to 10 errors introduced. Again,
errors were injected at variables with intermediate posiƟons in the records.

The results of the benchmarks are shown in Figure 5.3. Results are comparable with the
benchmarks for linear and categorical data type edits, except for the `bump' computaƟonal Ɵme
for the branch-and-bound method around 10-25 variables. InterpretaƟon is difficult without
precisely following the state of variables during the run of the algorithm, but a plausible
explanaƟon is fundamental difference between the branch-and-bound approaches for

Statistics Netherlands | Discussion paper 2014|07 23

single-type and mixed-type edits. For linear and categorical edits the branch-and-bound
algorithm traverses a tree that branches over the variables whereas for mixed-type edits there is
also a bifurcaƟon over each condiƟon in the mixed-type edits. This bifurcaƟon generates a lot of
extra edits compared to the situaƟon with single-type edits. On the other hand, branching over
variables includes simplifying steps that reduce the number of edits. Tests have shown that
interacƟon between these two effects strongly depends on the order of the variables and which
variables contain the actual error. The observed `bump' should therefore be regarded an artefact
of this specific benchmark. However, this does not alter the conclusion that the MIP approach
performs consistently beƩer.

6 Conclusion

We described a formulaƟon of the error localizaƟon problem for linear, categorical and
mixed-type restricƟon in terms of mixed-integer programming problems. It was shown that in
this formulaƟon the mixed-type restricƟons can be understood as a generalisaƟon of both linear
and categorical restricƟons.

Although mixed integer programming problems can be solved by readily available soŌware
packages, there may be a trade-off in numerical stability with respect to a branch-and-bound
approach. This holds especially when typical default seƫngs of such soŌware is leŌ unchanged
and data records and/or linear coefficients of the restricƟon sets cover several orders of
magnitude. In this paper we locate the origin of these instabiliƟes and provide some pointers to
avoiding such problems.

The lp_solve package has now been introduced as a MIP-solver backend to our editrules R
package for error localizaƟon and rule management. Our benchmarks indicate that in generic
cases where no prior knowledge is available about which values in a record may be erroneous (as
may be expressed by lower reliability weights), the MIP method is much faster than the
previously implemented branch-and-bound based algorithms. On the other hand, the
branch-and-bound based approach returns extra informaƟon, most notably the number of
equivalent soluƟons. The laƩer can be used as a indicator for quality of automaƟc data ediƟng.

References

Berkelaar, M., K. Eikland, and P. Notebaert (2010). lpsolve: Open source (Mixed-Integer) Linear
Programming system. Version 5.5.2.0 released 8 december, 2010.

Bradley, S., A. Hax, and T. MagnanƟ (1977). Applied mathemaƟcal programming.
Addison-Wesley.

De Jonge, E. and M. Van der Loo (2011). ManipulaƟon of linear edits and error localizaƟon with
the editrules package. Technical Report 201120, StaƟsƟcs Netherlands, The Hague.

De Jonge, E. and M. van der Loo (2011-2013). editrules: An R package for parsing and
manipulaƟng edit rules and error localizaƟon.

Statistics Netherlands | Discussion paper 2014|07 24

De Waal, T. (2003). Processing of erroneous and unsafe data. Ph. D. thesis, Erasmus University
RoƩerdam.

De Waal, T., J. Pannekoek, and S. Scholtus (2011). Handbook of staƟsƟcal data ediƟng and
imputaƟon. Wiley handbooks in survey methodology. John Wiley & Sons.

De Waal, T. and R. Quere (2003). A fast and simple algorithm for automaƟc ediƟng of mixed data.
Journal of Official StaƟsƟcs 19, 383--402.

Fellegi, I. P. and D. Holt (1976). A systemaƟc approach to automaƟc edit and imputaƟon. Journal
of the Americal StaƟsƟcal AssociaƟon 71, 17--35.

IEEE (2008). IEEE standard for floaƟng-point arithmeƟc. IEEE Std 754-2008, 1--58.

Konis, K. (2011). lpSolveAPI: R Interface for lpsolve version 5.5.2.0. R package version 5.5.2.0-5.

Schrijver, A. (1998). Theory of linear and integer programming. Wiley-Interscience series in
descrete mathemaƟcs and opƟmizaƟon. New York: John Wiley and Sons.

Van der Loo, M. and E. De Jonge (2011). ManipulaƟon of categorical data edits and error
localizaƟon with the editrules package. Technical Report 201129, StaƟsƟcs Netherlands.

Van der Loo, M. and E. De Jonge (2012). ManipulaƟon of condiƟonal restricƟons and error
localizaƟon with the editrules package. Technical Report 2012XX, StaƟsƟcs Netherlands. In
press.

Van der Loo, M., E. De Jonge, and S. Scholtus (2011). CorrecƟon of rounding, typing and sign
errors with the deducorrect package. Technical Report 201119, StaƟsƟcs Netherlands. R
package version 1.0-0.

Winkler, W. E. (1999). State of staƟsƟcal data ediƟng and current research problems. InWorking
paper no. 29. UN/ECE Work Session on StaƟsƟcal Data ediƟng, Rome.

Statistics Netherlands | Discussion paper 2014|07 25

Appendix
I Derivation of Equation 33

In the Phase I Phase II simplex method, phase I is aimed to derive a valid soluƟon which is then
iteraƟvely updated to an opƟmal soluƟon in Phase II. Here, we derive a Phase I soluƟon, specific
for error localizaƟon problems.

Recall the tableau of Eq. (32); for clarity, the top row indicates to what variables the columns of
the tableau pertain.

⎡
⎢
⎢
⎢
⎢
⎣

𝑓 𝒙் 𝜟 𝒔௫ 𝒔ା 𝒔ି 𝒔୼
1 𝟎 −𝒘் 𝟎 𝟎 𝟎 𝟎 0
0 𝑨 𝟎 𝟙 𝟎 𝟎 𝟎 𝒃
0 𝟙 −𝑴 𝟎 𝟙 𝟎 𝟎 𝒙଴
0 𝟙 𝑴 𝟎 𝟎 −𝟙 𝟎 𝒙଴
0 𝟎 𝟙 𝟎 𝟎 𝟎 𝟙 𝟏

⎤
⎥
⎥
⎥
⎥
⎦

.

Here, the 𝒔௜ are slack or surplus variables, aimed to write the original inequality restricƟons as
equaliƟes. The 𝒔௫ are used to rewrite restricƟons on observed variables, the 𝒔± to write the
upper and lower limits on 𝒙 as equaliƟes and 𝒔୼ to write the upper limits on 𝜟 as equaliƟes.

Observe that the above tableau almost suggests a trivial soluƟon. If we choose 𝒔௫ = 𝒃,
𝒔± = ±𝒙଴ and 𝒔୼ = 𝟏, we may set (𝒙, 𝜟) = 𝟎. However, recall that we demand all variables to
be non-negaƟve so 𝒔ି may not be equal to −𝒙଴. To resolve this problem, we introduce a set of
arƟficial variables 𝒂ି and extend the restricƟons involving 𝒔ି as follows:

𝒙 +𝑀𝟏 − 𝒔ି + 𝒂ି = 𝒙଴.

This yields the following tableau.

⎡
⎢
⎢
⎢
⎢
⎣

𝑓 𝒙் 𝜟 𝒔௫ 𝒔ା 𝒔ି 𝒔୼ 𝒂ି
1 𝟎 −𝒘் 𝟎 𝟎 𝟎 𝟎 𝟎 0
0 𝑨 𝟎 𝟙 𝟎 𝟎 𝟎 𝟎 𝒃
0 𝟙 −𝑴 𝟎 𝟙 𝟎 𝟎 𝟎 𝒙଴
0 𝟙 𝑴 𝟎 𝟎 −𝟙 𝟎 𝟙 𝒙଴
0 𝟎 𝟙 𝟎 𝟎 𝟎 𝟙 𝟎 𝟏

⎤
⎥
⎥
⎥
⎥
⎦

.

The essenƟal point to note is that the tableau now contains a unit matrix in columns 4, 5, 7 and 8,
so choosing 𝒔௫ = 𝒃, 𝒔ା = 𝒙଴, 𝒔୼ = 𝟏 and 𝒂ି = 𝒙଴, and (𝒙, 𝜟, 𝒔ି) = 𝟎 is a soluƟon obeying all
restricƟons. The arƟficial variables have no relaƟon to the original problem, so we want them to
be zero in the final soluƟon. Since the tableau represents a set of linear equaliƟes, we are
allowed to mulƟply rows with a constant and add and subtract rows. If this is done in such a way
that we are again leŌ with a unit matrix in part of the columns, a new valid soluƟon is generated.
Here, we add the fourth row to row three and subtract𝑴ିଵ Ɵmes the fourth row from the last
row. Row four is mulƟplied with𝑴ିଵ. This gives

⎡
⎢
⎢
⎢
⎢
⎣

𝑓 𝒙் 𝜟 𝒔௫ 𝒔ା 𝒔ି 𝒔୼ 𝒂ି
1 𝟎 −𝒘் 𝟎 𝟎 𝟎 𝟎 𝟎 0
0 𝑨 𝟎 𝟙 𝟎 𝟎 𝟎 𝟎 𝒃
0 2𝟙 𝟎 𝟎 𝟙 𝟎 𝟎 𝟙 2𝒙଴
0 𝑴ିଵ 𝟙 𝟎 𝟎 −𝑴ିଵ 𝟎 𝑴ିଵ 𝑴ିଵ𝒙଴
0 −𝑴ିଵ 𝟎 𝟎 𝟎 𝑴ିଵ 𝟙 −𝑴ିଵ 𝟏 −𝑴ିଵ𝒙଴

⎤
⎥
⎥
⎥
⎥
⎦

.

Statistics Netherlands | Discussion paper 2014|07 26

This almost gives a new valid soluƟon, except that the first row, represenƟng the objecƟve
funcƟon has not vanished at the third column. However, we may re-express the objecƟve
funcƟon in terms of the other variables. Namely using row four, we have

𝒘்𝜟 = 𝒘்𝑴ିଵ𝒙଴ +𝒘்𝑴ିଵ(𝒔ି − 𝒙 − 𝒂ି).

SubsƟtuƟng this equaƟon in the top row of the tableau shows that the soluƟon 𝜟 = 𝑴ିଵ𝒙଴,
𝒔௫ = 𝒃, 𝒔ା = 2𝒙଴ and 𝒔୼ = 𝟏 −𝑴ିଵ𝒙଴, and (𝒙, 𝒔ି, 𝒂ି) = 𝟎 represents a valid soluƟon. Since
the arƟficial variables have vanishing values, we may now delete the corresponding column, and
arrive at the tableau of Eq. (33).

Statistics Netherlands | Discussion paper 2014|07 27

Publisher
StaƟsƟcs Netherlands
Henri Faasdreef 312, 2492 JP The Hague
www.cbs.nl

Prepress: StaƟsƟcs Netherlands, Grafimedia
Design: Edenspiekermann

InformaƟon
Telephone +31 88 570 70 70, fax +31 70 337 59 94
Via contact form: www.cbs.nl/informaƟon

Where to order
verkoop@cbs.nl
Fax +31 45 570 62 68
ISSN 1572-0314

© StaƟsƟcs Netherlands, The Hague/Heerlen 2014.
ReproducƟon is permiƩed, provided StaƟsƟcs Netherlands is quoted as the source

60083201407 X-10

