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Error localization is the problem of finding out which fields in raw data records contain
erroneous values. The editrules extension package for the R environment for statistical
computing was recently extended with a module that allows for error localization based on a
mixed integer programming formulation (MIP). In this paper we describe the MIP formulation
of the error localization problem for the case of numerical, categorical, or mixed numerical and
categorical datasets. We introduce a MIP formulation that is a generalization of both linear as
well as categorical restrictions. We discuss the numerical boundaries within which a MIP solver
generates a stable solution and give directions on changing them to your own needs. The new
module is benchmarked against a previously available module, which is based on a
branch-and-bound approach. The benchmark shows that the MIP-based approach is
significantly faster. Trade-offs between the branch-and-bound and MIP approaches are
discussed as well.
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1.1

Introduction

Analyses of data are often hindered by occurrences of incomplete or inconsistent raw data
records. The process of locating and correcting such errors is referred to as data editing, and it
has been estimated that National Statistics Institutes may spend up to 40% of their resources on
this process (De Waal et al., 2011). Moreover, data often must obey many cross-variable
consistency rules which significantly complicate the data editing process. Indeed, Winkler (1999)
mentions household surveys where records have to obey 250, 300 or even 750 user-defined
interrelated consistency rules. For these reasons, considerable attention is paid to the
development of data editing methods that can be automated.

Error localization

Automated as well as manual data editing strategies for a data record typically consist of three
steps:

1. Find out which consistency rules a record violates;
2. Find out which fields in a record cause those violations;
3. Replace the values in those fields with better estimates, such that no rule is violated.

The second step is usually referred to as the error localization problem, which is the focus of the
current paper. Although it is widely recognized that data editing is a necessary step in the
statistical process, the amount of changes made to the data should obviously be minimized to
avoid introducing bias in estimations based on the edited data. This then leads to the following
minimization problem.

Given a record of n variables, subject to a number of possibly multivariate
consistency rules. Find the smallest (weighted) subset of fields, such that after
replacement of their values, the record violates no rules.

This minimization problem is named after Fellegi and Holt (1976), who first formulated and
solved the problem for the case of categorical data. Error localization has been extensively
discussed in literature™, so we will suffice with a few remarks. First, the search space related to
the minimization problem grows exponentially with the number of fields, rendering a brute-force
approach that runs through all possible solution candidates computationally unfeasible. Second,
the problem is complicated by the occurrence of implied rules. That is, the solution set must not
only allow the record to obey the original, user-defined set of rules, but also rules that are
logically or arithmetically implied by the original set. To cope with these complications several
algorithmic approaches have been developed, two of which are worth mentioning in this context.
The first is the branch-and-bound approach developed by De Waal and Quere (2003). The second
is an approach based on mixed-integer programming (MIP) described in De Waal et al. (2011).

") See De Waal et al. (2011) and references therein.
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1.2 The editrules package

Over the past decade the R statistical environment has received a surge in popularity. As a
consequence it has been extended with many user-built packages that allow for statistical
analyses of data. However, the number of packages specifically aimed at data editing seems to
be somewhat limited, except possibly in the area of imputation. The R package editrules (De
Jonge and van der Loo, 2013) was developed to help to bridge the gap between raw data
retrieval and data analysis with R. The main purpose of the package is to provide a convenient
interface to define data consistency rules (often referred to as edit rules) in R and to confront
them with data. Furthermore, the package allows for basic rule manipulation (deriving new
rules, finding inconsistencies, etc.) and for error localization functionality. As such, the package
does not offer functionality to correct data. Rather, it is aimed at identifying the set of solutions
to an error localization problem: the second step mentioned in the data editing strategy above.
Previous developments of the package have been described in De Jonge and Van der Loo (2011);
Van der Loo and De Jonge (2011) and Van der Loo et al. (2011).

The editrules package offers a toolbox that allows users to work with numerical, categorical or
mixed-type data editing rules. Up until now, error localization was performed by an
implementation of the branch-and-bound algorithm described by De Waal (2003). The main
disadvantage of this approach is that the branch-and-bound algorithm has O(2™) worst-case
time and memory complexity, where n is the number of variables occurring in a connected set of
rules. Moreover, the branch-and-bound solver is written in pure R, making it intrinsically slower
than a compiled language implementation. The main advantages of this approach are the ease of
implementation and the opportunity for users to exert fine-grained control over the algorithm.

As stated before, the error localization problem can be translated to a mixed-integer
programming problem. This allows us to reuse well-established results from the field of linear
and mixed-integer programming. Indeed, many advanced algorithms for solving such problems
have been developed, and in many cases implementations in a compiled language are available
under a permissive license. In editrules, the solver of the 1p_solve library (Berkelaar et al.,
2010) is used through R's 1pSolveAPI package (Konis, 2011). The 1p_solve library is written in
ANSTI C and has been tried and tested extensively.

The strategy to solve error localization problems through this library from R therefore consists of
translating the problem to a suitable mixed-integer programming problem, feeding this problem

to 1pSolveAPI, and translating the results back to an error location. It is necessary to distinguish
between:

— linear restrictions on purely numerical data,
— restrictions on purely categorical data, and
— conditional restrictions on mixed-type data,

since restriction for each data type calls for a different translation to a MIP problem.

The second part of this paper will focus on how to translate these types of error localization
problems to a mixed-integer formulation, paying attention to both theoretical and practical
details. In Section 3 attention is payed to numerical stability issues, Section 4 is devoted to
examples in R code and Section 5 describes benchmark results. Conclusions and a further
outlook are described in Section 6.
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Error localization and mixed
integer programming

A mixed integer programming problem is an optimization problem that can be written in the form

Minimize f(z) = c"z; )
st. Rz <d,

where c is a constant vector and z is a vector consisting of real and integer coefficients. One

usually refers to z as the decision vector and the inner product ¢’ z as the objective function.

Furthermore, R is a coefficient matrix and d a vector of upper bounds. Formally, the elements of

¢, R and d are limited to the rational numbers (Schrijver, 1998). This is never a problem in

practice since we are always working with a computer representation of numbers.

The name mixed-integer programming stems from the fact that z contains continuous as well as
integer variables. When z consists solely of continuous or integer variables, Problem (1) reduces
respectively to a linear or an integer programming problem. An important special case occurs
when the integer coefficients of z may only take values from {0,1}. Such variables are often called
binary variables. It occurs as a special case since defining z to be integer and applying the
appropriate upper bounds yields the same problem.

Mixed integer programming is well understood and several software packages are available that
implement efficient solvers. Most MIP software support a broader, but equivalent, formulation
of the MIP problem, allowing the set of restrictions to include inequalities as well as equalities.
As a side note we mention that under equality restrictions, solutions for the integer part of z are
only guaranteed to exist when the equality restrictions pertaining to the integer part of z are
totally unimodular®). However, as we will see below, restrictions on z are always inequalities in
our case, so this is of no particular concern to us.

In this paper we reformulate Fellegi Holt error localization (Fellegi and Holt, 1976) for numerical,
categorical and mixed-type restrictions in terms of MIP problems. The precise reformulations of
the error localization problem for the three types of rules are different, but in each case the
objective function is of the form

wT A, (2)

where w is a vector of positive weights and 4 a vector of binary variables, one for each variable
in the original record, that indicates whether its value should be replaced. More precisely, for a
record r = (1,13, ..., 1) of n variables, we define

A = { 1 if the value of 7; must be replaced 3)

0 otherwise.

This objective function obviously meets the requirement that the minimal (weighted) number of
variables should be replaced. In general, a record may contain numeric, categorical or both types
of data and restrictions may pertain to either one or both data types. To distinguish between the
data types below we shall write r = (v, x) where v represents the categorical and x the
numerical part of r.

") This means that every square submatrix of the coefficient matrix R pertaining to the integer part of z has determinant

Oor +1.
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2.1

For an error localization problem, the restrictions of Problem (1) consist of two parts, which we
denote

H H
5 Jes[ ]
Here, the restrictions indicated with H represent a matrix representation of the user-defined
(hard) restrictions that the original record 7 must obey. The vector z contains at least a numerical
representation of the values in a record 7 and the binary variables 4. An algorithmic MIP-solver
will iteratively alter the values of z until a solution satisfying (4) is reached. To make sure that the
objective function reflects the (weighted) number of variables altered in the process, the

restrictions in R? serve to make sure that the values in z that represent values in r cannot be
altered without setting the corresponding value in 4 to 1.

Summarizing, in order to translate the error localization problem for the special cases of linear,
categorical or conditional mixed-type restrictions to a general mixed integer problem, for each
case we need to properly define z, the restriction set Rz < d¥ and the restriction set

R°z < d°.

Linear restrictions

For a numerical record x taking values in R™, a set of linear restrictions can be written as
Ax < b, (5)

where in editrules, we allow the set of restrictions to contain equalities, inequalities (<) and
strict inequalities (<). The formulation of these edit rules is very close to the formulation of the
original MIP problem of Eq. (1). The vector to minimize over is defined as follows:

zZ = (xl,xz,...,xn,Al,Az,...,An). (6)

with the A; as in Eq. (3). The set of restrictions Rz < d! is equal to the set of restrictions of

Eq. (5), except in the case of strict inequalities. The reason is that while editrules allows the
user to define strict inequalities (<), the 1psolve library used by editrules only allows for
inclusive inequalities (<). For this reason, strict inequalities of the form a”x < b are rewritten as
a’x < b — ¢, with € a suitably small positive constant.

In the case of linear edits, the set of constraints R°z < d° consists of pairs of the form

A
=
<)

X; — MAl

—Xi — MAL (7)

IA
|
=
~o

fori=1,2,..,n. Here The x? are the actual observed values in the record and M is a suitably
large positive constant allowing x; to vary between x? — M and x? + M. Itis not difficult to see
that if x; is different from x? then A; must equal 1. For, if we choose A; = 0 we obtain the set of
restrictions

0 0
X < x; < x; (8)

which states that x; equals x}
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2.2

Example 1. Consider a record with business survey data, consisting of the variables Number of
staff p and Personnel cost c. We have the rulesp = 0, c = 0 and ¢ = p. The latter rule expresses
the notion that for each staff member, more than one monetary unit is spent. Given two observed
values p° and c°, disobeying one or more of the rules, the MIP problem for error localization has
the following form.

Minimize A, + A,
(x,4)ER2%{0,1}?

-1 -1 0 0] C 01
-1 0 0 0 0
o -1 o ofl? 0
st | 10 =M 0 AC <| »°
-1 0 —M 0| —p°
0 1 0 —-M c c0
-1 1 0 -M | | 0 |

Here, the first three rows in the set of restrictions represent the consistency rules while the other
rows connect the indicator variables A = (Ap, Ac) withp and c. O

Categorical restrictions

Categorical records v € D take values in a Cartesian product domain
D =Dy XDy X-+XDy, (9)

where each D; is a finite set of categories for the ith categorical variable. The category names are
unimportant so we write

D; ={1,2,...,|Di|}. (10)

The total number of possible value combinations |D| is equal to the product of the |D;|.

A categorical edit is a subset F of D where records are considered invalid, and we may write
F=FXF, X XF,, (11)

where each F; is a subset of D;. It is understood that if a record v € F then the record violates
the edit. Hence, categorical edits are negatively formulated (they specify the region of D where v
may not be) in contrast to linear edits which are positively formulated (they specify the region of
R™ where x must be). To be able to translate categorical edits to a MIP problem, we need to
specify F, such that if v € F then v satisfies e. Here, F is the complement of F in D, which can
be written as

F=F; XDy X+ XDy,

U Dy XFyXooXDpU-UDy XDy X X Fpp, (12)

where for each variable v;, f,- is the complement of F; in D;. Observe that Eq. (12) states that if
at least one v; € F;, then v satisfies e. Below, we will use this property and construct a linear
relation that counts the number of v; € F; over all variables.
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To be able to formulate the Fellegi Holt-problem in terms of a MIP problem, we first associate
with each categorical variable v; a binary vector d of which the coefficients are defined as follows
(see also Eq. (9)).

1ifvl-=/1

0 otherwise, (13)

da(v) = {

where A € D;. Thus, each element of d(v;) corresponds to one category in D;. It is zero
everywhere except at the value of v; € D;. We will write d(v) to indicate the concatenated
vector (d(vy), ..., d(v,,)) which represents a complete record. Similarly, each edit can be
represented by a binary vector e given by

e= \/ dQ), ..., \/ o |, (14)

AEF, AEFm,

where we interpret 1 and 0 as TRUE and FALSE respectively and the logical 'or' (V) is applied
element-wise to the coefficients of d. The above relation can be interpreted as stating that e
represents the valid value combinations of variables contained in the edit.

To set up the hard restriction matrix R of Eq. (4), we first impose the obvious restriction that
each variable can take but a single value:

Y dwm=1 (15)

AED;

fori =1,2,...,m. Itis now not difficult to see that the demand (Eqg. (12)) that at least one of the
v; € F; may be written as

eld(v) > 1. (16)

Equations (15) and (16) constitute the hard restrictions, stored in RY.

Using the binary vector notation for v, and adding the A-variables that indicate variable change,
the vector to minimize over (Eq. (1)) is written as

z=(d(v),AL, Dy, ..., Ap). (17)
To ensure that a change in v; results in a change in A;, the matrix R® contains the restrictions
dp() =1-A4,;, (18)

fori =1,2,...,m. Here, A° € D; is the observed value for variable v;. One may check, using
Eq. (13), that the above equation can only hold when either v; = 1° and A; = 0 (the original
value is retained) or v; # A° and A; = 1 (the value changes).

Example 2. Consider a two-variable record from the census with the variables Marital status m
and Age class a. We have v = (m, a) € D where

D = Dy, X D, = {married, unmarried} x {child, adult}.

Using the binary representation we see that a married adult is represented by the vector
v° = (d(married), d(adult)) = (1,0, 0, 1). The rule that states “'A child cannot be married”
translates to

F = E, X F, = {married} X {child}

which gives F., = {unmarried} and F , = {adult}. Using Eq. (14) we get e = (0,1,0, 1) and one
may verify that e” d(married, child) = 0 and therefore invalid (see 16). For v°, the MIP problem
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2.3

for error localiation now looks like this.

Minimi A A 1
(v,A%gll)T{loz,f}z m + Aa (19)

dmarried (m)

1010 0 07, o | =1
1 1 0 0 0 0 urc)lmarried - 1
st.]0 011 0 o0 dch"’d(a) 1
1000 -1 0 "G’A“’f(a) =11
0010 0 -1 m 1

A,

Here, the first row represents the edit rule, the second and third force that each variable can take
but one value (Eq. 16), and the last two rows connect the indicator variables A, and A, with the
value of m and a (Eq. 18). O

Mixed-type restrictions

Records r containing both numerical and categorical data can be denoted as a concatenation of
categorical and numerical variables taking values in D X R™:

= (Vg e, Uppy X1, o, X)) = (1, X), (20)

where D is defined in Eq. (9). As stated above, categorical edits are usually defined negatively as
a region of D that is disallowed while linear edits define regions in R™ that are allowed. We may
choose a negative formulation of edits containing both variable types by defining a single edit E
as follows:

E={reDxXxR":vEFAxEP} (21)

where F € D and P is a convex subset of R™ defined by a (possibly empty) set of k linear
inequalities of the form a’x > b. It is understood that if r € E, then r violates the edit. An
example of a restriction pertaining to a categorical and a numerical variable is A company
employs staff if and only if it has positive personell cost', The corresponding edit can be denoted
as {no staff} x {c > 0}.

To obtain a positive reformulation, we first negate the set membership condition and apply basic
rules of proposition logic:

-(veFAx€eP)
& =(veFaalx>b; A Aakx > by)

© veFvalx<b V- Valx < by (22)

This then yields a positive formulation of E. That is, a record r satisfies E if and only if
m k
TEE@\/UiEFiV\/a’JI-‘XSb]’. (23)
i=1 j=1

Observe that this formulation allows one to define multiple disconnected regions in D X R"
containing valid records using just a single edit. For example, one may define a numeric variable
to be either smaller than 0 or larger than 1. This type of restriction cannot be formulated using
just linear numerical restrictions.
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This formulation is both a generalization of linear inequality (Eq. 5) and categorical edits (Eq. 11).
Choosing k = 0, we get P = R™ and only the categorical part remains. Similarly, choosing

F = @, only the disjunction of linear inequalities remains. A system of linear equations that must
simultaneously be obeyed like in Eq. (5) can be obtained by defining multiple edits E, each
containing a single linear restriction.

The definition in Eq. (22) can be rewritten as a “conditional edit' by using the implication
replacement rule from propositional logic which states that —p V g may be replaced by p = q. If
we limit Eq. (22) to a single inequality, we obtain the normal form of De Waal (2003).

veEF=aTx<bh. (24)
If we choose F = @ and leave two inequalities we obtain a conditional edit on numerical data:
alx > b, > alx < b,. (25)

Writing mixed-type edits in conditional form seems more user-friendly as they can directly be
translated into an if statement in a scripting language. Finally, note that equalities can be
introduced by defining pairs of edits like so:

{vEF:aTbe

VEF=—a’x < —bh. (26)

To reformulate Eq. (22) as a MIP problem, we first define binary variables ¢; that indicate
whether x obeys alx > b:

Owhenalx < b;
{)j:{ when a’x < b; 27)

1 when a?x > b;
Using the or-form of the set condition (Eq. (22)) we can write the mixed-data edit as

k
efdwv)+ ) 1—-¢) =1 (28)

Recall from Egs. (14) and (13) that e is the binary vector representation of a categorical edit and
d(v) the binary vector representation of a categorical record. In the above equation, the *+'is
the arithmetic translation of the logical "V' operator in Eq. (22) that connects the categorical with
the linear restrictions. When any of the two terms is positive, record r satisfies edit E.

Rules of this form constitute the user-defined part of the R¥ part of the restriction matrix. To
explicitly identify £; with the linear restrictions we also add

to RY with M a suitably large positive constant. Indeed, if ¢; = 0, the inequality aJT-x < bjis
enforced and Eq. 28 always is satisfied. When #; = 1 the whole restriction can hold regardless of
whether the inequality holds. Finally, similar to the purely categorical case we need to add
restrictions on the binary representation of v as in Eq. (15), so Eq. (15), Eq. (28) and Eq. (29)
constitute RY.

There may be multiple mixed-type edits, each yielding one or more [ indicator variables for each
edit. The decision vector for the MIP problem may therefore be written as

zZ = (d(v),x, Al’ ...,Am, ...,Am+n, fl, ...,‘gK), (30)

where K is the total number of linear edits occurring in all the mixed-type edits. Finally, the R®
matrix connecting the change indicator variables (A) with the actual recorded values consists of

Statistics Netherlands | Discussion paper 2014|07 11



the union of the restrictions for categorical variables (Eq. (18)) and those for numerical variables
(Eq. (7).

Example 3. We consider a record r with the variables type of business t, which takes values in
D = {sp, other}, where “'sp" stands for “‘sole proprietorship", personnel cost ¢ € R and number
of staff p € R. Hence, we have r = (t,p,c) € D, X R2. We impose the following rules on r:

p = 0,c =0, c = p and if the business type is a sole proprietorship, then the number of staff
must equal zero. This may be expressed as (t € {sp}) = (p = 0) or equivalently

(t € {other}) V (p = 0). For a record r° = (sp, p°, c®), the error localization problem takes the
following form.

Minimize Ay + Ay + A
(r,A,£)ED¢xR?2%x{0,1}*

01 0 00 0 0 -1 >71 0
00 1 00 0 0 0 >| o
00 0 10 0 0 0 ddsp(t) >1| o
00 1 -10 0 0 o] %me®fS] ¢
11 0 00 0 0 0 P =] 1
st{]oo 1 o0 o0 o0 -M AC >| o
10 0 01 0 0 0 A =] 1
00 1 00 —-M 0 0 A < | »°
00 -1 00 -M 0 0 ; < | -p°
00 0 10 0 -M 0 < | ¢°
00 0 -1 0 0 —-M 0 | < | —c° |

The first row in the restriction represents the mixed-type rule, translated as shown in Eq. (28).
Row six connects the indicator variable € with the numerical edit in the consequent of

t € {sp} = (p = 0). Rows two, three and four represent the numerical edits limiting values of p
and c. Row five forces t to have only one value and row seven connects the value of t with that of
A¢. Finally, rows eight to eleven connect the numerical variables with the corresponding change
indicators. O

Numerical stability issues

An error localization problem, in its original formulation, is an optimization problem over n binary
decision variables that indicate which variables in a record should be adapted. Depending on the
type of rules, its reformulation as a MIP problem adds at least n variables and 2n restrictions.
Moreover, the reformulation as a MIP problem introduces a constant M, the value of which has
no mathematical significance but for which a value must be chosen in practice. Because of
limitations in machine accuracy, which is typically on the order of 10~1, the range of problems
that can be solved is limited as well. In particular, MIP problems that involve both very large and
very small numbers in the objective function and/or the restriction matrix may yield erroneous
solutions or become numerically unfeasible. Indeed, the manual of 1p_solve (Berkelaar et al.,
2010) points out that ‘[...] to improve stability, one must try to work with numbers that are
somewhat in the same range. Ideally in the neighborhood of 1'. The following subsections point
out a number of sources of numerical instabilities and provides ways to handle them.
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3.1 Ashortoverview of MIP-solving

Consider a set of linear restrictions on numerical data of the form Ax < b, where we assume

b = 0 and the restrictions consist solely of inequalities (<). In practice, these restrictions will not
limit the type of linear rules covered by this discussion, since it can be shown that all linear rules
can be brought to this form, possibly by introducing dummy variables [see e.g. Schrijver (1998);
Bradley et al. (1977)]. Furthermore, suppose we have a record x° > 0 which doesn't obey the
restrictions. The MIP formulation of the error localization problem can be written as follows.

Minimize f = w'A

A 0 b

1 -M || x x° (32)
stl 1 —m Ul alS] —x0 |

0 1 1

and x,4 = 0. Also, 1 denotes the unit matrix, 1 a vector with all coefficients equal to 1 and
M = 1M. The last row is added to force 4 < 1. This is necessary because we will initially treat
the binary variables A; as if they are real numbers in the range [0, 1].

The 1p_solve library uses an approach based on the revised Phase | - Phase Il simplex algorithm
to solve MIP problems. In this approach every inequality of Eq. (31) is transformed to an equality
by adding dummy variables: each row a’x < b is replaced by a’x + s = b, with s > 0.
Depending on the sign of the inequality, the extra variable s is called a slack or surplus variable.
In Eq. (31) there are four sets of restrictions (rows). We therefore need to add four sets of surplus
and slack variables (columns) in order to rewrite the whole system in terms of equalities.

Note that after this transformation, the whole problem including the cost function is written in
terms of equalities. It is customary to organize this set of equality objective function in a single
tableau notation as follows.

1o -w" 00 000
0[A 0 10 00|b
o[t -M 0 1 0 0[x° (32)
oft M 00 -1 0[x°
1)1

00 10 0 O

Here, the first row and column represents the cost function. Columns two and three correspond
to the original set of variables in Eq. (31) while columns four to seven correspond to sets of slack
and surplus variables. The final column contains the constant vector.

A tableau representation shows all the numbers that are relevant in an LP-problem at a glance.
By examining how LP-solvers typically manipulate these numbers we gain some insight into how
and where numerical stability issues may arise.

Since the tableau represents a set of linear equalities, it may be manipulated as such. In fact, the
simplex method is based on performing a number of cleverly chosen Gauss-Jordan elimination
steps on the tableau. For a complete discussion the reader is referred to one of the many
textbooks discussing it (e.g. Bradley et al. (1977)), but in short the Phase | - Phase Il simplex
algorithm consists of the following steps.

Phase I: Repeatedly apply Gauss-Jordan elimination steps (called pivots) to derive a decision
vector that obeys all restrictions. A vector obeying all restrictions is called a basic solution.

Phase II: Repeatedly apply pivots to move from the initial non-optimal solution to the solution
that minimizes the objective function f.
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In Phase |, a decision vector (x, 4, s) (with s the vector of slack and surplus variables) is derived
that obeys all restrictions. The precise algorithm need not be described here. It involves adding
again extra variables where necessary and then manipulating the system of equalities
represented by the tableau so that those extra variables are driven to zero. The binary variables
A are first treated as if they are real variables. In the Appendix it is shown in detail how an initial
solution for Eq. (32) can be found, here we just state the result of a Phase-l operation:

1|w'M™ 0 0 0 —w'M! 0|w'M'x°

0] 4 o0 1 0 0 0|b
0| 21 0 0 1 -1 0| 2x° . (33)
0|l M 1 0 0 -M1 0|M

ol -M* 0 0 O M1 1|1—-M1x°
This tableau immediately suggests a valid solution: it is easily confirmed by matrix multiplication
that the vector (x,4,s) = (0,x°M~1,[b, 2x%, 0,1 — M~1x°]) obeys all restrictions. The above
form of a tableau, where the restriction matrix contains a (column permutation of) the unit
matrix, the right-hand-side has only non-negative coefficients, and the cost vector equals zero for
the columns above the unit matrix is called the canonical form.

Now, a pivot operation consists of the following steps:

1. Select a positive element R;; from the restriction matrix. This is called the pivot element.

2. Multiply the ith row by R}

3. Subtract the ith row, possibly after rescaling, from all other rows of the tableau such that
their jth column equals zero.

The result of a pivot operation is again a tableau in canonical form but with possibly a different
value for the cost function. The simplex algorithm proceeds by selecting pivots that decrease the
cost function until the minimum is reached or the problem is shown to be unfeasible.

Up until this point, we have treated the binary variables 4 as if they were real variables, so the
tableaux discussed above do not represent solutions to our original problem which demands that
all A; are either 0 or 1. In the 1p_solve library this is solved as follows.

1. For each optimized value A*]‘- test whetheritis 0 or 1. If all A’;- are integer, we have a valid
solution of objective value wT 4 and we are done.

2. For the first variable A;- that is not integer, create two sub-models: one where the minimum
value of A; equals 1 and one where the maximum value of A; equals 0.

3. Optimize the two sub-models. If solutions exist, the result will contain an integer A;.

4. For the sub-models that have a solution and whose current objective value does not exceed
that of an earlier found solution, return to step 1.

The above branch-and-bound approach completes this overview. The discussion of pivot and
branch-and-bound operations has so far been purely mathematical: no choices have been made
regarding issues such as how to decide when the floating-point representation of a value is
regarded zero or how to handle badly scaled problems. Do note however, that in the course of
going from Phase-I to Phase-Il, the LP-solver is handling numbers that may range from M~ to M
which typically differ many orders of magnitude
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3.2

3.3

Scaling numerical records

In the MIP formulation of error localization over numerical records under linear restrictions,
Eq. (7) restricts the search space around the original value x° to [x — x°| < M. This restriction
may prohibit a MIP solver from finding the actual minimal set of values to adapt or even render
the MIP-problem unsolvable. As an example, consider the following error localization problem
on a two-variable record.

{ X1 = Xy

x° = (108,109).

Obviously, the record can be made to obey the restriction by multiplying x9 by 103 or by dividing
xJ by the same amount. However, in editrules the default value for M = 107 < 10% — 10°
which renders the corresponding MIP problem unsolvable. Practical examples where such errors
occur is when a value is recorded in the wrong unit of measure (e.g. in € instead of k€.).

It is therefore advisable to remove such unit-of-measure errors prior to error localization*) and to
express numerical records on a scale such that all |x°| < M. Note that under linear restrictions
(Eg. 5) one may always apply a scaling factor k > 0 to a numerical record x by replacing Ax < b
with A(kx) < kb. In the above example, one may replace x° by 10~°x? for the purpose of error
localization. If b = 0 and the coefficients of x do not vary over many orders of magnitude, such a
scaling will suffice to numerically stabilize the MIP problem.

Setting numerical threshold values

On most modern computer systems real numbers are represented in IEEE (2008) double
precision format. In essence, real numbers are represented as rounded-off fractions so
arithmetic operations on such numbers always result in loss of precision and round-off errors.
For example, even though mathematically we have 0.7 — 0.5 = 0.2, in the floating point
representation (denoted fI(-)) we have fI(0.7) — fI(0.5) # f1(0.2). In fact, the difference is about
0.56 - 10716 in this case.

This means that in practice one cannot rely on equality tests to determine whether two floating
point numbers are equal. Rather, one considers two numbers v and w equal when

| fi(v) — fi(w)| is smaller than a predefined tolerance. For this reason 1p_solve comes with a
number of predefined tolerances. These tolerances have default values but these may be altered
by the user.

The tolerances implemented by 1p_solve are summarized in Table 3.1. The value of epspivot
is used to determine whether an element of the restriction matrix is positive so it may be used as
a pivoting element. Its default value is 2 - 1077, but note that after Phase I, our restriction matrix
contains elements on the order of M~ = 10~7. For this reason, the value of epspivot is
lowered in editrules by default, but users may override these settings. For the same reason,
the value of epsint, which determines when a value for one of the 4; can be considered integer
is lowered in editrules as well. The other tolerance settings of 1p_solve: epsb (to test if the
right-hand-side of the restrictions differ from 0), epsd (to test if two values of the objective

¥} Methods for detecting such errors exist, see for example De Waal et al. (2011), Chapter 2. In fact, the principle of

minimal change is not applicable here since a better value can be deduced from the cause of the error.
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Table 3.1 Numerical parameters for MIP based error localization.

Default value
Parameter 1lp_solve editrules meaning

M - 107 setboundssox € x° + M

eps - 1073 translatex < O0tox < ¢

epspivot 2-1077 1071 test if pivot element R;; > 0

epsint 1077 10715 testifA; €N

epsb 10-10 1071%  testifb; >0

epsd 107° 107°  test if obj. values |f — f'| > 0 during simplex
epsel 10712 107%2  test if other numbers # 0

mip_gap 10711 10711 testif obj. values |f — f'| > 0 during B&B

function differ), epsel (all other values) and mip_gap (to test whether a bound condition has
been hit in the branch-and-bound algorithm) have not been altered.

The limited precision inherent to floating point calculations imply that computations get more
inaccurate as the operands differ more in magnitude. For example, on any system that uses
double precision arithmetic the difference fI(1) — fI(10717) is indistinguishable from fl(1). This
then, leads to two contradictory demands on our translation of an error localization problem to a
MIP problem. On one hand, one would like to set M as large as possible so the ranges x}’ +M
contain a valid value of x;. On the other hand, large values for M imply that MIP problems such
as Eqg. (31) may become numerically unstable.

In practice, the tableau used by 1p_solve will not be exactly the same as represented in Eq. (33).
Over the years, many optimizations and heuristics have been developed to make solving linear
programming problems fast and reliable, and several of those optimizations have been
implemented in 1p_solve. However, the tableau of Eq. (33) does fundamentally show how
numerical instabilities may occur: the tableau simultaneously contains numbers on the order of
M~ and on the order of x°. It is not at all unlikely that the two differ in many orders of
magnitude.

The above discussion suggests the following rules of thumb to avoid numerical instabilities in
error localization problems.

1. Make sure that elements of x° are expressed in units such that 4, b and x are on the order of
1 wherever possible.

2. Choose a value of M appropriate for x°.

3. If the above does not help in stabilizing he problem, try lowering the numerical constants of
Table 3.1.

In our experience, the settings denoted in Table 3.1 have performed well in a range of problems
where elements of A and b are on the order of 1 and values of x° are in the range [1, 108].
However, these settings have been made configurable so users may choose their own settings as
needed.
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Usage

In the editrules package, edits can be defined with the editset function. For example, the
command

E <- editset(expression(
X +y==12
,if (x>y )y >0
))

+ + + v

defines two edits on the variables x, y and z and stores them in an object called E. Here, E is an
object of type editset and it can be used to store and manipulate linear (in)equality edits, edits
on categorical data as well as edits on mixed-type data. Besides editset there are specialized
functions called editmatrix and editarray which can be used to define rules on purely
numerical or purely categorical data respectively. Edits are defined in basic R syntax; one may use
multiplication, addition, if-else statements, logical operators and the %in% operator for set
inclusion on categorical variables.

Besides defining rules on the command line, as in the example above, one may store the rules in
a text file and read the rules into R using the editfile function.

> E <- editfile("myedits.txt")

Here, myedits.txt is the name of a textfile containing the edits. The resulting object is by
default of class editset. If the extra argument type="num" or type="cat" is passed, only
numerical or categorical edits are read from the file. For a further discussion of the functions
mentioned here we refer the reader to the technical manual that is included with the software.
Also see the papers of Van der Loo and De Jonge (2011, 2012) for a precise description of the
edit-definition syntax.

Error localization

The main interface to error localization functionality is the localizeErrors function. The
function accepts editrules in the form of an editset, editmatrix or editarray object, and a
data set in the form of a data. frame. By default the function localizes errors using the
branch-and-bound algorithm. One may switch to the MIP-based approach by setting the
parameter method="mip" as in the following example.

> E <- editmatrix("x <= y")
> dat <- data.frame(x = c(10, 3), y = c(1, 5))
> el <- localizeErrors(E, dat, method = "mip")

The object returned by localizeErrors contains the error locations as well as some details on
how the algorithm ran. The error locations are stored in a boolean array called adapt which can
be accessed as follows.

> el$adapt

X y
1 TRUE FALSE
2 FALSE FALSE
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Here, the array has dimension 2 X 2 since the input data set consisted of two records with two
variables. Here, the result indicates for the first record that by altering the value for x, the record
can be corrected to obey the edit rule stored in E. For the second record, no alterations are
necessary.

Details on the error localization procedure are stored in a data.frame called status, which can
be accessed as follows.

> el$status

weight degeneracy user system elapsed maxDurationExceeded memfail
1 1 NA ©.04 0 0.05 FALSE FALSE
2 0 NA 0.02 0 0.01 FALSE FALSE

The status data.frame contains one record of information for each record in the input data. The
column weight contains the value of the objective function as defined by Eq. (2). The time it
took to perform the calculation is subdivided into user, system and elapsed time, where the latter
corresponds to the actual time that has passed on the clock. The boolean variable
(maxDurationExceeded) indicates whether the time limit for finding a solution was exceeded.
There are two status columns that have no relevance when the error localization method is MIP.
First, the indicator memfail can only be set to TRUE when the branch-and-bound algorithm is
used. It indicates that perhaps the optimal solution could not be found because of memory
limitations. Second, and more importantly, the degeneracy parameter is not set when
method="mip". This parameter indicates how many equivalent solutions there are to each error
localization problem. Contrary to the branch-and-bound method for error localization, the
MIP-based approach does not return this information.

The output of localizeErrors can be controlled with two parameters. Most importantly,
positive weights for each variable and optionally for each record can be set; variables with lower
weights attached to them are more likely to be part of a chosen solution which is otherwise
degenerate. Furthermore, a maximum search time per record can be specified, the default
setting being 10 minutes. Finally, the optional parameter 1pcontrol may contain a list of
parameters to be passed to 1pSolveAPI. The default settings can be listed as follows

> options("er.lpcontrol")
$er.lpcontrol
NULL

These options are precisely the values that differ from 1pSolve's default settings listed in Table
3.1. Changing or adding options can be done either by passing the 1pcontrol parameter to
localizeErrors, in which case it is only used for the current error localization problem. To
adapt a parameter for the remainder of the running R-session or until the option is reset one can
use R's options function. For example, to alter the epsb parameter through localizeErrors,
one may use either of the two calls below.

> localizeErrors( E, dat, lpcontrol = c(epsb=1e-12, options("er.lpcontrol™)) )
> options( er.lpcontrol = c(options("er.lpcontrol"), epsb=1e=12) )

The important thing to note is that it is up to the user to merge new options with existing ones
since 1pcontrol completely overwrites the default settings. A precise description of possible
options is also given in the reference manual of 1pSolveApi.
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4.2 Fine-grained control options

For users who wish to exert more fine-grained control on the MIP-solver or who wish to interface
editrules with another MIP-solving engine, two lower-level functionalities have been exposed
to the user.

The first is errorLocalizer_mip. This function takes a set of edit rules in the form of an
editset, editmatrix or editarray and a single data record in the form of a named list.

> L <- errorLocalizer_mip(E, list(x = 10, y = 1))

Here, errorLocalizer_mip translates the error localization problem for a single record to a
MIP problem, feeds it to 1pSolveAPI and returns all the results in a list. The list contains two
extra pieces of information not available in the output of localizeErrors. The firstis a
parameter called x_feasible, containing a record that actually obeys all the edit rules.

> L$x_feasible
$x
(1] 1

$y
[1] 1

The second parameter is called 1p. This is an object of class 1pExtPtr which points to an object
of 1pSolveApi, stored outside of R's memory. It contains precise information on the definition
of the MIP problem as interpreted by 1pSolveAPI. It can be manipulated or exported to a text
file using write.lp of the 1pSolveAPI package.

The second functionality entails the functions as.mip and as.1p.mip. The function as.mip
allows users to translate the combination of a set of editrules and a data record to a MIP
problem.

> mip <- as.mip(E, list(x = 10, y = 1))

> print(mip)

numl : X <=y

X0 ¢ X <= le+@7*delta.x + 10

yo :y <= le+@7*delta.y + 1

x0_1 : 10 <= le+@7*delta.x + x

yo_1 : 1 <= le+@7*delta.y + y

objective function = min: 1*delta.x + 1l*delta.y

The object returned by as.mip can be used to inspect how editrules translates an error
localization problem to a MIP problem. The interested reader may want to compare the above
representation with Egs. (2), (6) and (7).

This representation of the MIP problem can be translated to a form that is suited for solving with
1pSolveAPI.

> 1p <- as.lp.mip(mip)

The 1p object can directly be used as input for 1pSolveAPI or written to disk with write.1lp as
follows.

> write.lp(lp, file = "myLPfile.lp")

This command produces a text file that is written in a syntax understood by the 1p_solve
commandline program. 1p_solve also has facilities to translate this syntax to other formats
allowing export to other LP-solvers, including some commercial ones.
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5.1

Benchmarks

The branch and bound and MIP-based algorithms for error localization differ in consumption of
both memory and computational time. The performance of error localization methods depends
on the number of variables, the number of erroneous fields, the number of violated restrictions,
and the total number of restrictions.

Below we describe benchmarks based edit sets which can be systematically extended to
encompass more variables. The edit sets were designed so that synthetic records can be created
where the size of the solution to the error localization problem (the minimal number of fields to
alter so the record can be made consistent) can be easily controlled as well. This then gives an
impression of computational time consumed by the MIP and branch-and-bound approaches as a
function of the number of variables/edits and the number of erroneous fields.

Benchmarking the two approaches is further complicated by the fact that performance of
especially the branch-and-bound algorithm is strongly affected by the order in which variables
are treated by the algorithm. Indeed, preliminary tests showed that if the erroneous variables
are treated first (which may be achieved by setting appropriate reliability weights), performance
of the branch-and-bound method is largely on par with that of the MIP approach. If variables are
ordered such that erroneous variables are treated halfway, or at the end of the variable set, the
branch-and-bound method performs much slower than the MIP method. Below, we report on
benchmarks where errors were injected into variables which were positioned around the center
of the record. This mimics the case when there is no knowledge on the reliability of the variables.

Linear restrictions

The edits used in this benchmark form a balance system. Balance systems occur for example in
energy or business statistics where main variables (total energy consumption, total turnover) are
the sum of several other variables. Moreover, these main variables are also connected by linear
restrictions (total energy production equals total energy consumption). In balance systems
variables are therefore connected through a tree-like structure where the value corresponding to
a node equals the sum of its child node values.

In our benchmark we generate a balance system on 2n + 1 variables. Here, the restrictions
connect the variables through a binary tree where the value of a node is the sum of its two child
node values. The value of the top node is restricted to be non-negative and always at least as
large as any other value.

x1 = xz + X3

Xn = Xop tXop4r

Xy = 0

X, =2 x5, 1=23.2n+1

This edit set is fully connected and completely fixed by choosing ann > 0. The x; = 0 and
xq1 = x;forall2 <i < 2n + 1implies that all x; = 0. To see this, observe that since x; > 0 and
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Figure 5.1 Linear edits, each corresponds to a different number of errors

and x; = x3, we cannot have x, < 0 without having x3 > x;, which violates the restrictions
saying that x; must be larger than or equal to x;, i > 1. This reasoning applies recursively to all
x; because of the chained sum-rules.

One solution to this system is the zero vector (x4, ..., X2p41) = (0, ..., 0). An error can be
introduced in the data by setting some x; to —1. Because of the implied nonnegativity
contstraint, the number of variables in the optimal error localization solution is exactly equal to
the number of x; set to —1. The benchmark was performed for balance systems with 1 to 101
variables (n = 0 to 50). For each system records with 1 to 10 errors were generated.

Figure 5.1 shows the time of error localization for increasing number of variables and increasing
number of errors, both for the branch-and-bound method and the MIP method. The
branch-and-bound method hits the ‘exponential wall' around 30 variables and 5 errors or 20
variables with 10 errors, showing reasonable performance only when the number of errors is 2
or less. The branch-and-bound algorithm was broken off when no solution was found in less than
10 minutes which occurred at problems with more than 50 variables and 4 errors. In contrast,
the MIP-based approach performs well (under a few seconds) for all problems tested here.

We caution the reader to conclude that the MIP approach is better performing in all
circumstances: when a good set of reliability weights can be determined, variables that are most
likely to be erroneous can be treated early on by the algorithm, yielding a considerable
performance boost. In such a case, the optimal solution is found first by the algorithm and
branches leading to suboptimal solutions can be quickly rejected. However, in the generic case
where no reliability weights can be derived with great confidence, the MIP-approach is obviously
better performing.
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Figure 5.2 Categorical edits: each line corresponds to a different number of errors.

5.2 Categorical restrictions

For this benchmark we use a chain of interconnected edits:

v, == TRUE
if (v;==TRUE) v, == TRUE
if (v,_1==TRUE) v, == TRUE.

Examples of such edit chains occur in practice, for example: if married==TRUE then
adult==TRUE and if adult==TRUE then allowed to drive a car==TRUE. Here, we demand that
v; == TRUE which forces the only solution to this editset to be (v, ..., v,;) = (TRUE, ..., TRUE).
An error in the data can therefore be introduced by setting on of the v;'s to FALSE.

Benchmarks have been performed for systems with n = 1 to n = 50 variables. For each system
records with 1 to 10 errors were created. Again, the errors were introduced in variables with
intermediate positions in the record.

Figure 5.2 shows time spent on error localization for the branch-and-bound and MIP-approaches
as a function of number of variables and errors. Again, the MIP-based algorithm outperforms the
branch-and-bound approach in nearly every case. Problems with more than 30 variables and 4
errors yield no solution with the branch-and-bound approach within 10 minutes causing
calculations to be terminated. The same caution holds here as for the benchmarks on linear edits
described above: carefully chosen reliability weights can improve performance of the
branch-and-bound method. Without such knowledge however, MIP is the better generic choice
when performance is important.
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Figure 5.3 Mixed type edits: each line represents a different number of errors.

5.3 Mixed-type restrictions

We use a chain of interconnected restrictions defined as follows:

X1 >0
if (x1 =0) X320
if (xy-1=0) xy =0

Here, all x; are numeric but since the conditional restrictions are internally modeled using
dummy boolean variables, it serves as a model for mixed-type variable restrictions. Examples of
such chains do occur in practice, for example the following restriction is often found in the
context of business statistics: i number of employees > 0 then amount of salary payed > 0.

One viable solution for this system of edits is the zero vector (x;, ..., x,) = (0, ..., 0). Note that
the restriction set implies that x; = 0 fori = 1 ... N. An error can be injected by setting one or
more x; = —1. The set of edits is engineered such that if k variables are set to —1, then k
variables must be adapted to re-establish a viable solution. However, setting k variables to —1
does not mean that k explicitly defined edits are violated. For example, it is easily confirmed that
forn =4 and x = (0,0, —1, —1) only the third (out of five) edit is violated. However both x;
and x4 need to be adapted in order to repair the record.

The benchmark was performed with 1 to 50 variables and 1 to 10 errors introduced. Again,
errors were injected at variables with intermediate positions in the records.

The results of the benchmarks are shown in Figure 5.3. Results are comparable with the
benchmarks for linear and categorical data type edits, except for the ‘bump' computational time
for the branch-and-bound method around 10-25 variables. Interpretation is difficult without
precisely following the state of variables during the run of the algorithm, but a plausible
explanation is fundamental difference between the branch-and-bound approaches for
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single-type and mixed-type edits. For linear and categorical edits the branch-and-bound
algorithm traverses a tree that branches over the variables whereas for mixed-type edits there is
also a bifurcation over each condition in the mixed-type edits. This bifurcation generates a lot of
extra edits compared to the situation with single-type edits. On the other hand, branching over
variables includes simplifying steps that reduce the number of edits. Tests have shown that
interaction between these two effects strongly depends on the order of the variables and which
variables contain the actual error. The observed "bump' should therefore be regarded an artefact
of this specific benchmark. However, this does not alter the conclusion that the MIP approach
performs consistently better.

Conclusion

We described a formulation of the error localization problem for linear, categorical and
mixed-type restriction in terms of mixed-integer programming problems. It was shown that in
this formulation the mixed-type restrictions can be understood as a generalisation of both linear
and categorical restrictions.

Although mixed integer programming problems can be solved by readily available software
packages, there may be a trade-off in numerical stability with respect to a branch-and-bound
approach. This holds especially when typical default settings of such software is left unchanged
and data records and/or linear coefficients of the restriction sets cover several orders of
magnitude. In this paper we locate the origin of these instabilities and provide some pointers to
avoiding such problems.

The 1p_solve package has now been introduced as a MIP-solver backend to our editrules R
package for error localization and rule management. Our benchmarks indicate that in generic
cases where no prior knowledge is available about which values in a record may be erroneous (as
may be expressed by lower reliability weights), the MIP method is much faster than the
previously implemented branch-and-bound based algorithms. On the other hand, the
branch-and-bound based approach returns extra information, most notably the number of
equivalent solutions. The latter can be used as a indicator for quality of automatic data editing.
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Appendix
Derivation of Equation 33

In the Phase | Phase Il simplex method, phase | is aimed to derive a valid solution which is then
iteratively updated to an optimal solution in Phase Il. Here, we derive a Phase | solution, specific
for error localization problems.

Recall the tableau of Eq. (32); for clarity, the top row indicates to what variables the columns of
the tableau pertain.

f| T A s, S, S_ S,

11 0 -wT 0 o0 0 0|0

0| A4 0O 1 O 0 O|b

0 1 -M 0 1 0 0|x°
0 1 M 0 0 -1 o0]|x°
0] 0 1 0 0 o0 1|1

Here, the s; are slack or surplus variables, aimed to write the original inequality restrictions as
equalities. The s, are used to rewrite restrictions on observed variables, the s to write the
upper and lower limits on x as equalities and s, to write the upper limits on 4 as equalities.

Observe that the above tableau almost suggests a trivial solution. If we choose s, = b,

s = +x° and sp = 1, we may set (x,4) = 0. However, recall that we demand all variables to
be non-negative so s_ may not be equal to —x°. To resolve this problem, we introduce a set of
artificial variables a_ and extend the restrictions involving s_ as follows:

X+M1—-s_+a_ =x,.

This yields the following tableau.

xT A s

f x S+ S_ Sp a_
1/l0 —wT 0 0 0 0 0|0
0] A 0O 1 0 0 O O0|b
ol 1 -Mm 0 1 0 0 O0]|x°
0| 1 M 0 0 -1 0 1|x°
0| o 10 0 0 1 01

The essential point to note is that the tableau now contains a unit matrix in columns 4, 5, 7 and 8,
so choosing s, = b, s, = x° s, = 1anda_ = x%, and (x,4,s_) = 0 s a solution obeying all
restrictions. The artificial variables have no relation to the original problem, so we want them to
be zero in the final solution. Since the tableau represents a set of linear equalities, we are
allowed to multiply rows with a constant and add and subtract rows. If this is done in such a way
that we are again left with a unit matrix in part of the columns, a new valid solution is generated.
Here, we add the fourth row to row three and subtract M~ times the fourth row from the last
row. Row four is multiplied with M~1. This gives

f x7 A s, s, S_ S a_

1 o —wl 0 o 0 0 00

0 A 0 1 0 0 O 0|b

0 21 0 0 1 0 0 1| 2x°

0 Mt 1. 0 0 -M* o Mt | M~ 1x°
0|-M1 0O 0 O M1t 1 M1 |1-Mx°
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This almost gives a new valid solution, except that the first row, representing the objective
function has not vanished at the third column. However, we may re-express the objective
function in terms of the other variables. Namely using row four, we have

wiA=wIM1x° + wiM™1(s_ —x—a.).
Substituting this equation in the top row of the tableau shows that the solution 4 = M~ 1x9,
s, =b,s, =2x"and sy, =1 — M 1x° and (x,s_,a_) = 0 represents a valid solution. Since

the artificial variables have vanishing values, we may now delete the corresponding column, and
arrive at the tableau of Eq. (33).
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