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Algebraic algorithms for stochastic imputation of

item nonresponse with edit restrictions

Mark P.J. van der Loo

Summary:

Raw survey records often contain inconsistencies or missing items. To improve

data quality, error correction and missing value imputation procedures are often

included in the process of producing statistics. Imputation of missing values is

often complicated by edit restrictions which reduce the number of value com-

binations that can be present in a record. The presence of edit restrictions

also complicates estimating the amount of estimation uncertainty caused by an

imputation step.

In this paper three algorithms are presented which can be used to impute miss-

ing datasets with categorical variables under edit restrictions. The algorithms

are based on manipulating contingency tables rather than individual records.

They are based on performing random walks on the set of all solutions to an

imputation problem, a technique which has become available by recent progress

made by Diaconis and Sturmfels (1998). The application to imputation prob-

lems as described here seems to be new.

A Metropolis-Hastings sampler and a Gibbs sampler have been implemented

to draw random elements from a set of solutions to an imputation problem

with edit restrictions. The probability associated with each solution can be

modeled using familiar techniques from discrete data analysis such as log-linear

or graphical models. A third algorithm, which finds a maximum likelihood

solution under a specified probability model has been implemented as well.

The algorithms are tested on real survey datasets. It is concluded that the

random walk algorithms offer a generic and fast way to impute categorical

datasets and to study imputation variability. The efficiency of the different

algorithms is also compared. The main conclusion is that although the Gibbs

sampler needs less iterations than the Metropolis Hastings sampler, the total

computational time necessary is about the same.

The current implementation is able to handle datasets where at most one item

per record is missing. However, the theory described in this paper allows for

generalisation to general missig data patterns without problems.

Keywords:

Stochastic imputation, categorical data, algebraic statistics, markov chain Monte

Carlo
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1 Introduction

One of the key tasks of a statistical institute is to transform raw data (micro-

data), either from surveys or administrative sources, into relevant statistical

statements. It is therefore clear that the quality of microdata is of importance

for the quality of the statements produced by an institute. It is well known how-

ever, that raw microdata is often plagued with errors or missing values. Since

preventing all errors is either too costly or even impossible, statistical institutes

include a data editing step in their statistical process to improve raw data qual-

ity. Data editing includes correcting inconsistencies and filling in missing values

(imputation). It is desirable to automate this process as much as possible, and

a lot of attention has been paid to develop algorithms and methods for data

editing.

Many of the error correction methods are based on algorithms where a dataset

is edited record by record. Examples are cold deck and hot deck imputation

(Ford, 1983), nearest neighbour imputation, regression imputation or imputa-

tion based on the expectation maximization algorithm (Demster et al., 1977;

Wu, 1983). Error correction methods often follow the principle of Fellegi and Holt

(1976) which basically states that as few fields as possible should be changed.

One can show however that for systematic errors, this is not always the best

choice. See for example Scholtus (2008).

Depending on the method, it can be difficult to estimate the amount of variance

that imputation procedures add to estimated parameters. In general, analytical

expressions for the variance are specific for an imputation model and can be

cumbersome to derive.

The difference between this work and the methods mentioned above is that here

instead of records, contingency tables based on the records are manipulated. In

terms of contingency tables the set of solutions to a missing data problem is a

finite set of nonnegative discrete vectors which obey certain linear conditions.

Algorithms to draw random elements from such a set were proposed about a

decade ago by Diaconis and Sturmfels (1998). The algorithms perform random

walks on a finite convex set of discrete vectors. The main contribution of

Diaconis and Sturmfels (1998) is a method to generate a set of steps (a markov

basis) necessary to perform a random walk.

Here, an implementation of random walk algorithms in C and R is presented

which facilitates the following two features.

1. Draw random solutions from the space of all solutions to an imputation

problem according to a probability model. Metropolis-Hastings (Algo-

rithm 1; p. 15) as well as Gibbs sampling (Algorithm 2; p. 16) algorithms
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are implemented.

2. Perform maximum likelihood imputation based on a statistical model over

the set of all solutions to the problem of imputing a dataset with missing

items (Algorithm 3; p. 17).

The algorithms support edit restrictions which can be represented as structural

zeros.

The methods are applicable to general m-way contingency tables, limited only

by the practical ability to derive suitable probability models and (lack of) com-

putational time. Also, the current implementation is suited only to deal with at

most one missing item per record. A generalisation to include general missing

data patterns is planned.

Apart from presenting the current implementation, this paper is aimed to give a

short overview of the algebraic method for sampling contingency tables. There-

fore, the rest of this paper is organized as follows: in the next section some basic

properties of contingency tables are discussed and the problem of missing data

is expressed in terms of contingency tables and their marginals. In section 3 a

short introduction to multinomial probability models for contingency tables is

given. In Section 4, the algorithms are listed and some implementation issues

are discussed. Numerical results on the convergence properties of the imple-

mentation are presented in Section 5. In Section 6 the results are summarized

and prospects for further development of the implementation are given. In Ap-

pendix A some basic properties of tensor products and direct sums of finite

dimensional vector spaces are given. Appendix B gives some background on

random walks and the Metropolis-Hastings sampler and in Appendix C it is

shown explicitly that the markov basis used here is valid. As a reference, some

frequently used notation is defined below.

Important notation. (Notation is also introduced in the text.) D: vector

of discrete random variables Di, x: contingency table, I: multi-index with

nonnegative indices ij with 1 ≤ j ≤ m, referring to entries xI in a contingency

table. r, s and t are used as single indices of a contingency table, d =
∏m

j=1 dj :

dimension (number of cells) in a contingency table with dj the number of levels

of variable Dj . Z
k
≥0: positive orthant1 of Z

k , ~eI : standard basis vector of

Z
k with coefficients eI′ . The backslash (\) is used to indicate set difference.

A: linear map sending x to its marginals, I: set of edit constraints, M, U

multinomial and uniform distributions, ΩX : space of valid contingency tables,

P: probability, E: expected value, p(x): (pseudo) probability assigned x, p:

vector of pseudoprobabilities with entries px = p(x). | · |: absolute value or set

cardinality and [k] ≡ {0, 1, . . . , k}.
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Table 1. Three categorical variables,

with value levels and indices.

Variable value index

Age

young 0

middle 1

old 2

Marital status

married 0

unmarried 1

Gender

male 0

female 1

2 Contingency tables and missing data

A contingency table is a list of counts of value combinations for several cate-

gorical variables. The most informative way to represent a contingency table

is as a multidimensional array or tensor. Each index of the tensor corresponds

to one variable on a questionaire, and each position in the array corresponds

to one combination of variable values. For computational purposes, it can be

more convenient to represent contingency tables as a one-dimensional array, or

vector. Specifically, this representation allows the calculation of marginals to

be represented as a simple matrix-vector multiplication.

The purpose of the following paragraphs is to describe the connection between

the two representations, and to give an explicit matrix representation of the

map which computes marginals of a contingency table. Next, the missing data

problem is described in these terms. As a service to the reader, Appendix A lists

some basic properties of tensor products and direct sums of finite dimensional

vector spaces.

2.1 Contingency tables

Consider a vector D = (D1, D2, . . . , Dm) of m random categorical variables.

Each variable Dj can take on dj values, giving d = Πm
j=1dj possible realizations.

For reasons pointed out in the next subsection, it is convenient to label the pos-

sible values of Dj with an index ij , taking values 0 ≤ ij ≤ dj − 1. The possible

realizations of D can be then identified with a multi-index I = (i1, i2, . . . , im).

When every random variable Dj corresponds to a question in a questionary,

every possible I corresponds to a combination of answers given by a single re-
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Table 2. Properties of respondents s for the vari-

ables in Table 1. The corresponding multi-idex I

is given in the last column.

s Age Marital status Gender I

1 middle married female (1, 0, 1)

2 old unmarried male (2, 0, 1)

3 middle married female (1, 0, 1)

spondent. As an example, consider the variables in Table 1. The variables Age,

Marital status, and Gender give rise to a 3× 2× 2 contingency table, with the

indices indicated in the 3rd column. In this example, an old unmarried male

corresponds to I = (2, 1, 0).

To construct a contingency table for multiple respondents, one basically counts

the ocurrences of different values of I. This can be done formally by associating

with each possible realization of D, a basis vector ~eI of the tensor product

space ⊗m
i=1Z

di in the standard representation. That is, ~eI is a tensor with

coefficients eI′ where eI′ = 1 if I = I ′ and zero otherwise. For example, the old

unmarried male mentioned above is associated with the following basis tensor

of Z
3 ⊗ Z

2 ⊗ Z
2:

~e210 =

















0 0

0 0

0 1









,









0 0

0 0

0 0

















. (1)

Here, the commas and brackets are left out in the explicit subscript of ~eI to

avoid cluttering of symbols.

A contingency table y, corresponding to complete answers in a survey S is now

constructed by adding the basis tensors corresponding to each respondent s:

y =
∑

s∈S

~eI(s) =
∑

I

yI~eI . (2)

The coefficients yI denote the number of times each combination of answers has

occurred in the survey: they are the entries of the contingency table. Explicitly,

y =

















y000 y010

y100 y110

y200 y210









,









y001 y011

y101 y111

y201 y211

















. (3)

As an example, consider the records given in Table 2. The contingency table

corresponding to the three respondents is calculated by:

y = ~eI(1) + ~eI(2) + ~eI(3)
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= ~e101 + ~e210 + ~e101

= 2~e101 + ~e210. (4)

Explicitly, this reads

y = 2

















0 0

0 0

0 0









,









0 0

1 0

0 0

















+

















0 0

0 0

0 1









,









0 0

0 0

0 0

















=

















0 0

0 0

0 1









,









0 0

2 0

0 0

















. (5)

2.2 Marginals

A marginal is obtained by summing over one or more indices of a contingency

table. Since in this work we will be concerned with item nonresponse where at

most one item per record is missing (to be discussed in the next subsection),

we will only consider marginals obtained by summing over a single index. For

a contingency table of dimension d1 × d2 × . . . × dm, summing over ij yields

a marginal which has dimension d(j) = d/dj . There are m such marginals b(j)

with entries b
(j)
I\j given by:

b
(j)
I\j =

dj−1
∑

ij=0

yi1,i2,...,ij ,...,im , (6)

where I\j = (i1, i2, . . . , ij−1, ij+1, ij+2, . . . , im). For example, summing over a

single index in the contingency table of Eq. (5) yields the marginals

b(1) =
[(

b
(1)
00 b

(1)
10

)

,
(

b
(1)
01 b

(1)
11

)]

=
[(

0 1
)

,
(

2 0
)]

(7)

b(2) =

















b
(2)
00

b
(2)
10

b
(2)
20









,









b
(2)
01

b
(2)
11

b
(2)
21

















=

















0

0

1









,









0

2

0

















(8)

b(3) =









b
(3)
00 b

(3)
01

b
(3)
10 b

(3)
11

b
(3)
20 b

(3)
21









=









0 0

2 0

0 1









. (9)

It is possible to construct a linear map which computes the marginals of a

table. To do so, note first that each marginal b(j) is an element of the tensor

product ⊗i6=jZ
di , which has basis vectors ~eI\j . Using Eq. (2), is not difficult to

show that the linear map A(j), sending ~eI to ~eI\j computes marginal b(j) when

applied to contingency table y. Namely

A(j)y =
∑

i1...ij ...im

yi1...ij ...imA
(j)~ei1...ij ...im

9



=
∑

i1...ij−1,ij+1,...im





∑

ij

yi1...ij ...im



~ei1...ij−1,ij+1,...im

=
∑

I\j

b
(j)
I\j~eI\j = b(j). (10)

Secondly, note that each realization of D contributes to every marginal. For

example, the respondent in Eq. (1) adds to the marginals b
(1)
10 , b

(2)
20 and b

(3)
21 ,

which stand for unmarried males, old males, and old unmarried individuals

respectively. Combining the marginals in a direct sum b = ⊕m
j=1b

(j), we can

compute all marginals of y with:

Ay = b, where A~eI = ⊕m
j=1~eI\j . (11)

A representation for A can be obtained by switching from the tensor repre-

sentation of y and b to a vector representation so A becomes a matrix. The

vector representation of y is obtained by regarding all entries yI as elements

yt of a d-dimensional column vector. Here, t is the index obtained by ordering

all possible indices I in reverse lexicographical order (first index running first),

with 0 ≤ t ≤ d− 1. In the example this means that

y =

























y0

y1

...

y8

...

y11

























=

























y000

y100

...

y201

...

y211

























. (12)

The following equation relates the vector index t to the multi-index I:

t(I) =
m
∑

j=1

ijΠ
j−1
k=1dk, with Π0

k=1dk ≡ 1. (13)

The inverse relation reads

I(t) = (i1(t), i2(t), . . . , im(t)),

with

ij(t) =
(

t div Πj−1
k=1dk

)

mod dj . (14)

Here, div and mod denote integer division and remainder upon division re-

spectively. Equations (13) and (14) can be understood by thinking of the

multi-index I = (i1, i2, . . . , im) as a positional number system, indexing the

numbers t = 0, 1, . . . , d − 1. The form of these relations depends on indices t

and ij running from 0 up.

10



The vector representation of the complete marginal b is given by the direct

sum of the vector representations of the marginals b(j). So in the example, b
(1)
00

corresponds to b0 in the vector representation and b
(3)
11 corresponds to b15. The

equation that relates the entries b
(j)
I\j = bt is given by:

t(I, j) =

j−1
∑

k=1

d(k) + t(I\j), with
0
∑

k=1

d(k) ≡ 0. (15)

Here, d(k) is the dimension of the kth marginal and t(I\j) is obtained by re-

stricting Eq. (13) to I\j. Using Eqs. (14) and (15) we can now state the explicit

form of the matrix representation of A:

Akl =

{

1 if k = t(I(l), j) for any j ∈ {1, 2, . . . ,m}

0 otherwise.
(16)

Here, k runs from 0 to
∑m

j=1 d
(j), the number of entries in b, and 0 ≤ l ≤ d− 1.

Having defined relations (13) - (15), both single indexing t and multi-indexing

I of tensorial objects will be used in the rest of the paper without mentioning.

2.3 Missing data, stochastic imputation, and edit restrictions

Consider a dataset with ntot records, of which nfull are complete, and n lack

precisely one item. Assume that this is the only missing data pattern, so

nfull + n = ntot. For the set of complete records, a contingency table yfull can

be constructed. Denote the complete table corresponding with the unknown

complete dataset by

ytot = yfull + x, (17)

and the corresponding complete marginal by btot. Here, x represents the missing

part of the table.

The solution to the imputation problem is to find an estimate x̂ so that ytot

can be estimated with

ŷtot = yfull + x̂ (18)

Here, x is considered a realization of a random variable X, taking values in

a probability space ΩX . A reasonable imputation is then to choose the most

probable value of x under a specified probability measure, which can be esti-

mated from complete data for example. Alternatively, a random x can be drawn

from ΩX to reflect the variability of the incomplete sample. In the remainder of

this paragraph ΩX will be specified. The probability distribution and sampling

algorithms are discussed in the subsequent sections.

11



First, since the number of partially filled records is known, there is a restriction

d−1
∑

t=0

xt = n with xt ≥ 0, (19)

which ensures that ΩX is finite. Second, restrictions can be derived for the

marginals of x. Using Eq. (17), the marginals for ytot can be written as:

Aytot = bfull +Ax. (20)

The second term cannot be computed, since the partially filled records cannot

be used to construct the contingency table x. However, it is possible to construct

partial marginals bpart based on the information in the partially filled records.

For example, consider again the variables in Table 1. If there are 10 married

males of unknown age in the dataset, this gives b
(1)part
00 = 10. Combining al the

known parts of the records with missing items into bpart, the missing part of the

marginals bmiss is defined by

Ax = bpart + bmiss. (21)

Since bmiss ≥ 0 by Eqs. (16) and (19), the following set of inequalities is

obtained:

Ax ≥ bpart, (22)

where ≥ is interpreted elementwise.

Equations (19) and (22) are enough to define ΩX in the case when there are no

edit restrictions on value combinations. In the case of categorical variables, edit

restrictions limit the set of allowed values for x (and y), which can be expressed

as

xI = 0, for I ∈ I, (23)

with I some set of indices. In this context edit restrictions are often refered to

as structural zeros. For example, if the edit restriction “young people cannot

be married” is imposed on the variables in Table 1, I can be written as

I = {(0, 0, 0), (0, 0, 1)} or equivalently I = {0, 6}. (24)

Here, Eq. (13) was used to compute the single index representation from the

multi-index notation on the left.

Combining the edit restrictions with the conditions in Eqs. (19) and (22), ΩX

is given by

ΩX = {x ∈ Z
d
≥0|Σ

d
t=1xt = n ∧Ax ≥ bpart ∧ xt = 0 ∀t ∈ I}. (25)

12



The main problem now is to draw elements from ΩX according to some prob-

ability distribution. Although the problem of counting the elements of ΩX is

not solved in general, it is understood that the number of elements becomes

too large to list them in practice. For example, when bpart = 0 and I = ∅,

the number of distinct elements |ΩX | =
(

d+n−1
n

)

. In most practical situations

this means that representation of ΩX in computer memory is not an option.

One way around this is to generate a possible solution x(0) as starting point

for a random walk on ΩX . During the walk, new elements x(1), x(2), . . . are

generated by taking randomly chosen elementary steps, while the correlation

between the current value x(τ) and x(0) decreases. After a sufficient number

of steps (the burn-in time) are taken, x(τ) can be considered a random sample

from ΩX .

3 Statistical models

3.1 Distribution on ΩX

Based on for example historical data or complete records, one can assign proba-

bilities to all possible solutions x to the imputation problem. When there are no

restrictions on the entries of x except the one given in Eq. (19), the probability

distribution is given by the multinomial distribution

M(x|θ) =
n!

x0!x1! · · ·xd−1!
θx0

0 θx1

1 · · · θ
xd−1

d−1 , (26)

where θt = P[D = ~eI(t)] are the cell probabilities. Remember that we associated

each realization of D with a basis vector ~eI in paragraph 2.1. When there are

edit restrictions given by a set of indices I as in Eq. (23), we get the restricted

multinomial distribution M(x|θ, I) simply by deleting xI and θI from Eq. (26)

for all I ∈ I. For the distribution on ΩX a truncated distribution can be used,

given by

p(x) = P(X = x|θ, bpart, I) =

{

M(x|θ, I) if Ax ≥ bpart

0 otherwise.
(27)

Note that p(x) is not normalized; it is a pseudodistribution. This poses no

problem since it can be shown (see Section 4) that only the ratios p(x)/p(x′)

with x, x′ ∈ ΩX are needed to perform random walks. In general, the parameter

vector θ is not known and needs to be estimated, so p(x) is replaced by an

estimate p̂(x) corresponding to an estimate θ̂.

3.2 Modes of the multinomial distribution

As stated in Section 2.3, a reasonable imputation x̂ can be to take (one of) the

mode(s) of p(x). There is no explicit expression for the integer modes of the
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multinomial distribution, although an algorithm which finds all the modes has

been proposed by le Gall (2003).

The modes of M are those values of x which maximize M(x|θ) for a given θ

under the condition that
∑

t xt = n. Analytical continuation of M such that

x ∈ R
d
≥0 gives the log-likelihood function:

`(x|θ) = −
d−1
∑

t=0

ln Γ(xt + 1) +
d−1
∑

t=0

xt ln(θt) (28)

Imposing Eq. (19) yields the Lagrange function

L(x, λ) = `(x|θ) + λ

(

d−1
∑

t=0

xt − n

)

. (29)

Equalizing derivatives with respect to xt and λ to zero yields

xt = ψ−1(ln θt + λ)− 1 (30)

for 0 ≤ t ≤ d − 1. Here ψ(z) = Γ′(z)/Γ(z) is the digamma function [see for

example Abramowitz and Stegun (1972)] and ψ−1[ψ(z)] = z for nonnegative

real z. The constant λ must be chosen so that

∑

t

ψ−1(ln θt + λ) = n+ d. (31)

The integer modes are the x ∈ ΩX which are nearest (in the Euclidian sense) to

the real solution. Integer solutions need not be unique. Consider for example

d = 2, n = 1 and θ = (1/2, 1/2). There are two possible states, namely

x = (1, 0) and x = (0, 1), which both have probability M(x|θ) = 1/2 which is

also the discrete maximum. For comparison, the solution on the real plane is

given by x = (0.5, 0.5), which has probability M(x|θ) = 1
2Γ(3/2)−2 ≈ 0.64.

As stated in Section 2.3 (see also Eq. 18), one reasonable imputation is to

estimate x as the most probable value given a probability measure over its

possible values. When there are multiple integer modes, in distribution (27) the

statistical model does not distinguish a single maximum probability solution

to the imputation problem. In that case any of the modes in ΩX is equally

acceptable.

In this work, an “upward random walk” is used to approach the modes of the

distribution. That is, starting from a value x(0) ∈ ΩX a random step is picked,

and the step is taken only if it increases p(x). After a while the average number

of steps taken will decrease, indicating proximity to one of the modes.
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4 Markov chain Monte Carlo and optimization

In the following subsection the central algorithms used to generate random

walks are given. Some implementation issues concerning performance are also

discussed. In appendices B and C more detail on the background of the algo-

rithms is given.

4.1 Sampling algorithms

Two basic algorithms have been implemented to generate random samples from

ΩX . Both these algorithms perform random walks on ΩX . They are based on

repeating two steps: (1) starting from a value x ∈ ΩX , draw a (set of) vector(s)

v uniformly such that x + v ∈ ΩX . (2) with a probability proportional to

p(x+ v) [Eq. (27)] actually take the step.

In drawing the steps v, we have to take in to account the conditions in Eqs.

(19), (22) and the possibility of edit restrictions. It is obvious that any vector

vrs with coefficients vrs
t = δrt − δst obeys

d−1
∑

t=0

(x+ vrs)t =
d−1
∑

t=0

xt = n, (32)

so condition (19) is satisfied. Here, δij is the kronecker delta defined by δij = 1

if i = j and zero otherwise. Theorem 3.1 of Diaconis and Sturmfels (1998)

ensures that the set of vectors vrs, with r 6= s and 0 ≤ r, s ≤ d− 1 are sufficient

to produce irreducible markov chains on ΩX (they form a markov basis, cf.

Appendix B. The following algorithm is based on the Metropolis-Hastings

sampler [Lemma 2.1 of Diaconis and Sturmfels (1998)], and it incorporates edit

restrictions as well as condition (22).

Algorithm 1: Metropolis-Hastings sampler1

Input: x ∈ ΩX , A, p, bpart

Output: N th value x of a markov chain on ΩX .

n := 0;2

while n < N do3

Draw (r, s) uniformly without replacement from [d− 1]\I;4

if A(x+ vrs) ≥ bpart ∧ x+ vrs ≥ 0 then5

n := n+ 1;6

x := x+ vrs with probability min{p(x+ vrs)/p(x), 1};7

Here, we use the notation [d−1] = {0, 1, . . . , d−1}. Drawing two indices r and

s from [d− 1]\I ensures that entries xI remain unchanged for all I ∈ I. Thus,

edit restrictions are included trivially here. In the current implementation edits
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are encoded in θ, by setting θI = 0 for all I ∈ I. The if-statement in line 5

ensures that the partial marginal conditions are included and no negative values

for xI can occur. The algorithm is set up so that steps which would lead to

an x outside of ΩX (invalid steps) are not counted. The ratio of valid versus

invalid steps drawn depends in general on the values of p and the elements of

bpart, see also section 5. It is also assumed here that the set of structural zeros

I is small enough so that it can be stored explicitly in computer memory.

The Metropolis-Hastings algorithm was implemented as a C-routine for speed

and called from the R statistical environment to facilitate analysis (see R-Dev).

The routines were optimized for speed as much as possible. For example, to

check the linear condition A(x+ vrs) ≥ bpart we keep track of the current value

for b = Ax and only check and update the entries of x and b affected by the

operation xr 7→ xr +1 and xs 7→ xs−1. Also note that the ratio p(x+vrs)/p(x)

can be calculated as:

p(x+ vrs)

p(x)
=

xs

xr + 1

θr

θs
, (33)

which significantly enhances numerical stability during computation.

The steps vrs described here are the smallest possible, and rather large chain

lengths (N ∼ 105) are necessary to ensure convergence. It is not difficult to

see that for integer k, the step kvrs also conserves condition (19) and it was

already shown in Lemma 2.2 of Diaconis and Sturmfels (1998) that a random

walk based on these steps can be implemented too. The resulting algorithm is

a Gibbs sampler and reads as follows.

Algorithm 2: Gibbs sampler1

Input: x ∈ ΩX , A, p, bpart

Output: N th value x of a markov chain on ΩX .

n := 0;2

while n < N do3

Draw (r, s) uniformly without replacement from [d− 1]\I;4

if xr > 0 ∨ xs > 0 then5

n := n+ 1;6

Determine kmin and kmax such that x+ kvrs ∈ ΩX for kmin ≤ k ≤ kmax;7

Draw k from {kmin, kmin + 1, . . . , kmax} with probability proportional to99

q(x, k) = p(x+ kvrs)/p(x);

x := x+ kvrs;10

Here, the values of kmin and kmax are determined by the conditions in Eq. (22)

and that x ≥ 0. The only issue worth mentioning here is that in practice the

set of ratios q(x, k), kmin ≤ k ≤ kmax suffers from numerical instabilities, and
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therefore has to be limited further. The ratios are computed using the following

recursion relation:

q(x, 0) = 1 and q(x, k) =
xs − k + 1

xr + k

θr

θs
q(x, k − 1), (34)

which can be derived from Eq. (27). In practice, the ratio xs/xr can be in

the order of 10±2. Combined with a large difference kmax − kmin, this leads to

values q(x, k) out of the range which can be represented by a computer (Inf or

NaN). Large (or small) ratios θr/θs can have a similar effect. Moreover, to draw

k (line 9), the cumulative distribution Q(x, k) =
∑k

k=kmin q(x, k)/Q(x, kmax) is

computed. The value of k is determined by drawing a value u from U(0, 1)

and determining the smallest value of k for which Q(x, k) ≥ u. Here we have

to take into account that on a 32-bit computer, double precision numbers are

represented by 53 bits, so a uniform random number generator can produce

a maximum of 253 ≈ 1016 different numbers between 0 and 1. It is therefore

meaningless to have ratios |10 log[q(x, kmax)/q(x, kmin)]| ≥ 16. To prevent nu-

merical instabilities, the range of stepsizes kmax − kmin is limited further by

demanding that |10 log q(x, k)| ≥ κ, where κ is an adjustable threshold value.

To be absolutely safe (on a 32 bit system) a value of κ = 8 should be used.

In practice a value of κ = 16 gives good results and allows somewhat larger

stepsizes on average.

4.2 Upward random walk

To approximate one of the modes of the distribution over ΩX , an algorithm

based on the Metropolis-Hastings sampler is used.

Algorithm 3: Upward random walk1

Input: x ∈ ΩX , A, p, bpart

Output: N th value x of a random upward walk on ΩX .

n := 0;2

while n < N do3

n := n+ 1;4

Draw (r, s) uniformly without replacement from [d− 1]\I;5

Determine maxk{p(x+ kvrs)} with k ∈ {0,±1} and x+ kvrs ∈ ΩX ;6

x := x+ kvrs;7

The algorithm randomly chooses a valid step vrs. A step is taken if either

p(x + vrs) or p(x − vrs) is larger than p(x). This is certainly not the most

efficient algorithm to approximate a mode although for large enough N it will

converge to a mode. For moderately large N , a reasonable solution close to

a maximum is obtained. The convergence behaviour as a function of N is
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studied in Section 5. The efficiency of the walk decreases near the mode since

the number of p(x)-increasing steps decreases near an optimum. The algorithm

is adopted here for ease of implementation, postponing a better solution to

future work.

5 Numerical examples

The algorithms of Sections 4.1 and 4.2 were tested on two different datasets.

The first dataset is publicly available data from the US Labour Force Survey

(USLFS), made available via the machine learning archive of the University

of California-Irvine (UCI-MLR). The advantage of using a published dataset

is that it facilitates (future) comparison of methods by different authors. The

second dataset is a set of records from the Dutch Integrated System of Social

Statistics (ISSS). In the next subsection convergence behaviour is studied by

introducing item nonresponse in the USLFS data. In Section 5.2 convergence

properties are studied as a function of several parameters, such as nonresponse

fraction, number of variables and chain length.

5.1 Convergence properties with public USLFS data

The USLFS data set consists of 32 560 records with 15 categorical variables. Of

these, four variables were chosen, namely

(workclass)8 × (marital status)7 × (sex)2 × (race)5, (35)

where the subscripts designate the number of levels di for each variable. The

variable workclass actually has nine categories, but records with workclass=“?”

were omitted. Records with (multiple) item nonresponse were also removed,

yielding a full dataset of ntot = 30 724 complete records. Of these records 3 073

records were drawn randomly, and in each of the drawn records, a single item

was set empty. Thus we have nfull = 27 651, n =3 074, and the dimension of

the table is d = 8 · 7 · 2 · 5 = 560.

The probability distribution of Eq. (27) was parameterized with a simple model

based on complete-record frequencies:

θ̂t =
yfull

t + η
∑d−1

t=0 (yfull
t + η)

. (36)

Here, η = 10−3 is a small number, added to have nonzero probability for cells

without any observation. In this model it is assumed that there are no structural

zeros.

To study convergence properties of the Metropolis-Hastings and the Gibbs sam-

pler, random solutions were generated by taking the Nth value x(N) of a

18



markov chain. markov chains of various lengths (N = 10k, k = 1, 2, . . . , 6)

were generated, all starting from the same pre-imputed startvalue x(0). The

startvalue was generated by sequential random imputation of the records with

item nonresponse and computing the contingency table. A markov chain based

on the Gibbs sampler of Algorithm 2 was used to generate x(0) from this table.

To study convergence properties, consider a distance function on ΩX , based on

the L1-norm:

dist(x, x′) =
1

2n
||x− x′||1 =

1

2n

d−1
∑

t=0

|xt − x′t|. (37)

where n =
∑d−1

t=0 xt =
∑d−1

t=0 x
′. It can be seen that dist(x, x′) scales between 0

and 1.

If a chain is long enough, producing multiple drawings should average out to the

expected value E(x). Therefore, a measure of convergence for a markov chain of

lengthN is given by dist(E[x(N)],E[x]). Unfortunately, neither E[x(N)] nor E[x]

can be calculated precisely. Remember that E[x] =
∑

x∈ΩX
xp(x), which is not

a feasible calculation. However, since p(x) is nearly a multinomial distribution,

we will use the approximation E[x] ≈ nθ̂. The expectation of x(N) is estimated

by averaging over a number of samples: Ê[x(N)] = x̄(N). We are now able to

define a convergence parameter CN as:

CN = dist[x̄(N), nθ̂]. (38)

This parameter will converge to dist(E[x], nθ̂) as the number of samples and the

chain length increases.

In Figure 1 the convergence parameter is shown as a function of number of

samples (horizontal axis) and the markov chain length. It is clear that the

Gibbs sampler (left panel) needs shorter chains to reach convergence than the

Metropolis-Hastings sampler (right panel). A markov chain generated by 104

Gibbs steps (�) has the same level of convergence as the Metropolis-Hastings

sampler at 105 steps (♦). For the Gibbs sampler, increasing the chain length to

105 or 106 has little effect on convergence. The same holds for increasing the

chain length of the Metropolis-Hastings sampler from 105 to 106.

Apart from chain lengts, the actual time it takes to generate the markov chains

should be taken into account. In Table 3 the average relative runtimes for gener-

ating the markov chains are listed. The second and third column show runtime

scaled to the MH-sampler for markov chain length N = 103. For comparison:

on a AMD64 laptop at 1.8GHz running R under Linux, this calculation took

0.15 seconds (measured as user time by R).

Although the Gibbs sampler is about 10 times more efficient in terms of chain

length, it is also roughly about 10 times slower. The reason is that for every
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Convergence parameter for various Markov Chain lengths
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Figure 1. Convergence behaviour for drawing random samples to impute USLFS

data at various markov chain lengths. The horizontal axis designates the num-

ber of drawings used to determine the convergence parameter of Eq. (38). The

left panel shows results for the Gibbs sampler and the right panel shows re-

sults for the Metropolis-Hastings sampler. In terms of chain length, the Gibbs

sampler is obviously more efficient.

step in the Gibbs sampler, a whole series of probability ratios q(x, k) must be

calculated, where for the Metropolis-Hastings algorithm only one probability

ratio p(x+ vrs)/p(x) is computed at each step. Here, these effects cancel each

other in terms of computational time. Taking 104 Gibbs steps takes about the

same time as generating 105 Metropolis-Hastings steps.

It must be noted that the runtime also depends on the particular values of θ̂t.

For example, the USLFS data used here has 289 cells with no observations in

yfull and these cells obtain a low probability for occupancy. This means that

at runtime, a fair amount of cells are probably empty. Every step that would

decrease the value of these cells is therefore invalid. The more cells are empty,

the higher the chance is that invalid steps are drawn which have to be rejected,

thereby increasing the time it takes to take a fixed number of MH-steps. This

effect can be circumvented by setting η = 0 in Eq. (36), so θt = 0 and xt will

be treated as a structural zero. Setting η = 0 does alter the model assumptions

and therefore the interpretation of the imputation results.

When η = 10−3, as in the previous example, the average number of invalid

Metropolis-Hastings steps drawn before a markov chain with N = 104 is gen-
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Table 3. Relative timings of the

Metropolis-Hastings and the Gibbs

sampler. Timing of the MH-sampler

with N = 1 000 is used as reference.

MC length N MH Gibbs ratio

10 0.60 0.60 1.00

102 0.60 1.07 1.78

103 1.00 5.73 5.73

104 5.00 58.80 11.76

105 52.7 960 18.21

106 974 11233 11.53
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Figure 2. Convergence of the optimization algorithm as a function of the number

of steps taken. The left panel shows the local mean stepsize over 100 Metropolis-

Hastings steps (stepsize can vary between 1 and 0) for the first 5 · 104 steps.

The right panel shows the moving average over the first 5 · 105 steps.

erated equals about 20 000. Twice as much as the length of the chain. The

average stepsize over valid steps is 0.31 (the average stepsize is given by the

number of steps taken divided by the number of valid steps drawn). When

η = 0, all cells without observations are treated as structural zeros, and care

must be taken to make sure that x(0) ∈ ΩX . In this case, the MH algorithm

draws about 5 000 invalid steps and the average stepsize doubles to about 0.63.

The increase in average stepsize is due to the lower number of empty cells.

Finally, convergence of the upwards random walk algorithm of Section 4.2 was

tested. To test convergence, starting from a random point x(0) ∈ ΩX , every

100 steps the average stepsize (number of steps taken/100) was computed. The

result is shown in the left panel of Figure 2. The average stepsize decreases with

the length of the walk and approaches zero near a mode. In the right panel

the moving average is shown over a larger number of steps. After 5 · 105 steps

virtually no more steps are taken, indicating proximity to one of the modes.
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5.2 Convergence properties with Dutch ISSS data

Data of the Dutch Integrated System of Social Surveys (ISSS2) was used to

study convergence properties, timings and imputation quality of the algorithms

described above. The ISSS is a large file containing data from administrative

sources and (household) surveys. The following variables were selected from

the file:

(educational level)7 × (internet)2 × (health)5

×(smoke2001)2 × (church)5 × (ethnic group)7, (39)

where subscripts denote the number of levels for each variable. The same

dataset has been used extensively by Cobben (2009) to study nonresponse ef-

fects. The complete file consists of 36 515 records. After omitting all records

where the value of one of the above variables is “unknown” or missing, 6 476

records are left, which is what we use to test our algorithms. In all tests, either

617 (≈ 10%) or 1 619 (≈ 25%) of the records are chosen randomly and equipped

with one missing item each, also at random.

5.2.1 Convergence and timing

Convergence of sampling algorithms was measured as described in Section 5.1.

That is, missings are generated, and a simple imputation model is chosen, sim-

ilar to the one in Eq. (36) with η = 10−3. Convergence is measured with

Eq. (38), where the number of variables, markov chain length, the number

of missings and the sampling method are varied. markov chains were cre-

ated for data with 2 variables: (educational level)7 × (internet)2, 3 variables:

(educational level)7 × (internet)2 × (health)5 and so on up to all six variables.

The corresponding dimensions of the contingency tables are d =14, 70, 140,

700, 4900. The results are plotted in Fig. 3.

The end of a markov chain can be considered a random sample from (ΩX , p)

when convergence parameter CN does not decrease anymore as a function of

chain length N . It can be seen in Fig. 3 that larger chain lengths are necessary

when the number of variables (and hence the dimension d of the table) in-

creases. For small table dimensions, the Gibbs sampler clearly converges faster

as function of chain length than the Metropolis-Hastings sampler. For larger

table dimensions the difference between the two samplers is smaller.

In Fig. 4 and 5 the runtime as a function of chain length is plotted for different

numbers of variables. The time is given in seconds, but the value will naturally

depend on the hardware (here: a virtual pc running Windows 2000). As can be

expected, both the Metropolis-Hastings sampler and the Gibbs sampler have
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Convergence as function of MC length
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Figure 3. Convergence [See Eq. (38)] to E(x) as a function of MC length,

for different numbers of variables. 2 Variables relates to (educational level)7 ×

(internet)2, 3 variables to (educational level)7 × (internet)2 × (health)5 and so

on, see Eq. (39). The table dimensions d are 14, 70, 140, 700 and 4900.

linear asymptotic time complexity as function of chain length. Apart from the

dependence on chain length there is a constant overhead, needed to allocate

memory, detect structural zeros, and creating a lookup table which holds the

relation between indices in the contingency table and the marginals. This over-

head increases with table dimension, which causes the deviation from linear

behaviour at small chain lengths.

In Fig. 5 the same data as in Fig. 4 is shown, only now with the table dimension

d as horizontal axis. The dependence of runtime on d is more complex. The

Gibbs sampler shows a minimum runtime at d = 700 (5 variables), while the

Metropolis-Hastings sampler increases monotonically with chain length (when

no points are shown, the elapsed time is less than a millisecond). The minimum

in the runtime of the Gibbs sampler is the consequence of two opposing effects.

As mentioned in Section 5.1, the rate determining step for the Gibbs sampler is

the calculation of the probability ratios q(x, k). In this numerical experiment,

the total number of observations is constant while the dimension of the table

is varied. For small table dimensions (i.e. small number of variables), large

stepsize ranges kmin–kmax are possible since all observations are distributed

over a small number of cells. As the table dimension increases, observations

are distributed over more cells and smaller stepsize ranges are possible. Hence,
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Runtime as function of MC length
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Figure 4. Runtime as function of chain length and number of variables. Missing

points indicate a runtime shorter than a millisecond (which are rounded to zero).
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Figure 5. Runtime as function of table dimension. Same data as in Fig. 4.
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Table 4. Table dimension d, number of observed

empty cells ξ and number of invalid steps divided

by markov chain length

Invalid steps / chain length

n= 647 n=1619

d ξ MH Gibbs MH Gibbs

14 0 0.001 0.000 0.000 0.000

70 5 0.480 0.095 0.288 0.041

140 15 0.768 0.193 0.506 0.109

700 270 3.026 1.152 1.869 0.663

4900 4127 23.929 10.645 14.277 6.339

calculating q(x, k) takes less time. The opposing effect is caused by an increasing

number of observed empty cells as the table dimension increases. For the Gibbs

sampler, any pair of empty cells xr = xs = 0 corresponds to an invalid step

vrs, so the probability of drawing invalid steps increases with table dimension,

causing increased overhead.

In Table 4 the number of empty cells (ξ) is shown together with the number

of invalid steps per chain length for the Metropolis-Hastings and the Gibbs

sampler. It can be seen that the Gibbs sampler draws much less invalid steps

than the Metropolis-Hastings sampler. This can be explained by a closer ex-

amination of Algorithms 1 and 2. Given a table x in the markov chain, the

probability that the Metropolis-Hastings sampler draws an invalid step, is given

by P[xs = 0∨A(x+vrs) < bpart] while that same probability for the Gibbs sam-

pler is given by P[xr = xs = 0∨A(x+vrs) < bpart]. The latter is clearly smaller

than or equal to the former.

5.2.2 Imputation quality

In this section, the upward random walk algorithm [See Algorithm 3] is used to

generate (near) maximum likelihood imputations. Again, a number of n = 647

or n = 1619 records were chosen randomly, and equipped with one missing item.

All six variables from Eq. (39) were taken into account. Next, the statistical

model of Eq. (36) was parameterized using the remaining complete data and

η = 10−3.

To gain insight in the imputation quality, the real contingency table xreal (the

table before the introduction of missing values) was also stored. In Fig. 6 the

relative probability p[x(τ)]/p[xreal] is shown as a function of the number of steps

τ taken by the upward random walk algorithm. The relative probability con-

verges in about 25 000 steps to a value much larger than one. This means that
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Relative probability vs number of steps
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Figure 6. Relative probability of x(τ) with respect to the real value as a function

of the number of steps in Algorithm 3.
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Figure 7. Distance between x(τ) and real value as a function of the number of

steps in Algorithm 3.
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Variability of imputation

dist(xrand, xopt)
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Figure 8. Distribution of distance between random and optimal imputation for

104 random imputations.

the most probable value, given the incomplete data, does not equal xreal. Even

if the complete data was used, this can be the case, since for the multinomial

distribution, the expected value in general does not equal the mode. In Fig.

7 the distance dist[xreal, x(τ)] as a function of the number of steps τ is shown

(see Eq. 37). Note that the distance for the calculation with n = 647 cannot

be compared with the distance for n = 1619, since the distances are defined

on different probability spaces ΩX . However, this measure could be used to

compare different statistical models at the same number of missings, for exam-

ple. The distance between the real and estimated value decreases initially as τ

increases, and oscillates before converging to a constant value. Again, the final

distance does not converge to zero since the expected value and mode of the

multinomial distribution need not be the same.

Finally, as a demonstration of the power of this imputation method, 104 random

imputations xrand were generated by Gibbs sampling, and for every imputation

the distance dist(xrand, xopt) from the optimum value xopt was computed. Here,

xopt was determined with the upward random walk algorithm. The results are

shown in Fig. 8 and can be interpreted as a measure of variability of the impu-

tation model of Eq. (36). Also, the location of the histogram is an indication

of the distance between the expected value and the mode.
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6 Conclusions and outlook

The methods described in this paper can be used to find maximum likelihood

or random imputations for categorical missing data problems. By focusing on

contingency tables the well-understood machinery of parameterizing statistical

models over sets of contingency tables (e.g. log-linear models) becomes avail-

able. The algorithms described here yield a powerful tool to investigate and

compare such imputation models since large numbers of random imputations

can be generated quickly. Important information such as estimation of impu-

tation variance therefore becomes readily available.

The numerical tests on survey data show that the implementations work fast

and reliable. The tests also show that although the Gibbs sampler converges

faster in terms of markov chain length, this does not allways mean that it takes

less time to compute. The behaviour depends largely on the presence of empty

cells (which are not structural zeros).

The current implementation is limited to just one missing value per record, and

takes into account one equality restriction, namely that the sum over entries in

the contingency table is constant. To increase the utility of our implementation,

the following extensions could be implemented.

1. Extension to general missing data patterns. This is a simple extension

to the theory as described in Section 2. The major generalisation is that

more marginals have to be taken into account.

2. Extension to general markov bases. As described in Appendix C, other

linear equality restrictions than
∑

t xt = n can be implemented, although

the markov bases involved can be nontrivial. One solution could be to

store a library of markov bases for different tables which can be read by

our program. Bases can be generated with for example 4ti2 (4ti2 team)

or Macaulay 2 (Grayson and Stillman). Generating a library seems a

reasonable option since computing bases can take extremely long. Also,

over time more bases are becoming available in literature via the progress

made in the underlying theory.

3. Incorporation into an EM-like algorithm. In the numerical examples

demonstrated in this paper, the distribution on the set of all solutions

to an imputation problem is parameterized using data from complete

records. In order to use the information available in the incomplete data,

the upward random walk algorithm can be interpreted as a Maximization

step in some form of the Expectation Maximization algorithm.

4. Error correction. The method to walk through the solution space ΩX

can be used for error correction. Define Ω′
X , similar to ΩX , except that
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edit restrictions are not incorporated. Then, ΩX ⊆ Ω′
X . Starting with

a table x in Ω′
X\ΩX , it is possible to walk to the region of edit-obeying

tables ΩX . There are several types of algorithms thinkable which could

perform this task. It could also be used as a general method to generate

the startvalue x(0) of a markov chain.

5. Generalization to continuous data. It is an open question wether the

method described in this work can be extended to continuous numerical

data.

Implementing the first suggestion will already yield a complete and ready-to-

use imputation program which can be called from the R environment. The

program should then be easy to use by statistical researchers to impute cate-

gorical datasets and to evaluate statistical models on categorical datasets with

missing data. The 4th suggestion is particularly usefull for generating startval-

ues. Evaluating statistical models under the various missing data mechanisms

[M(C)AR, NMAR3] should be interesting, especially when the EM algorithm

becomes available for this method.
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Notes

1In the relevant literature on markov bases for contingency tables, the no-

tation Z
k
≥0 seems more common than N

k
0 which is why it is adopted here.

2Dutch: Permanent onderzoek leefsituatie (POLS).

3Missing (Completely) at Random, Not Missing at Random
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A Tensor products and direct sums of vector spaces

As a service to the reader the definition and some elementary properties of finite

dimensional linear spaces are given below.

A vector space V is a set satisfying the following properties

1. If v and w are elements of V , then so is v + w, and v + w = w + v.

2. There is a neutral element 0 for which v + 0 = v, for every v ∈ V .

3. For every element v, there is an inverse element v̄, such that v + v̄ = 0.

4. If v ∈ V and λ is a scalar, then λv is also in V .

Here, we assume that λ is from a field or ring, which assures that for two scalars

λ and µ, we have λµ = µλ. The standard example of a field is the set of real

numbers R and the standard example of a ring is the set of integers Z. Also,

scalar multiplication distributes over addition.

Elements of V are called vectors. A set of abstract vectors B = {e1, e2, . . .}

which has the property that every v ∈ V can be uniquely expressed as

v =
∑

i

viei, (A.1)

with the vi scalar is called a basis of V . The vi are called coefficients of v in

basis B. A vector space with a finite basis is called a finite dimensional vector

space. Here, we are concerned only with such spaces. In general, the choice

of basis is not unique, but given a finite basis any vector can be represented

as v = (v1, v2, . . . , vn). Note that we use the same notation v for the abstract

vector in Eq. (A.1) as for it’s representation. Furthermore, from Eq. (A.1)

it follows that addition of vectors is represented by elementwise addition of

the coefficients, scalar multiplication distributes over the coefficients, the zero

vector is represented by all coefficients equal to zero and the additive inverses

are obtained by multiplying all coefficients with −1. All bases of a vector space

have the same number of elements, called the dimension of V , or dimV . Each

basis vector ei has a standard representation ~ei with coefficients ej = δij .

A linear map A : V →W , with V and W vector spaces has the property

A(λv + µv′) = λAv + µAv′, (A.2)

with λ and µ scalars and v, v′ ∈ V . The action of a linear map on a vector is

determined its action on the basis vectors:

AeV
i =

∑

j

eW
j Aji, (A.3)
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where Aji are elements of the matrix representation of A and eV
i and eW

j are

basis vectors of V and W respectively.

Given two finite vector spaces V and W . It is possible to construct a new finite

vector space U = V ⊗W , called the tensor product space as follows. If eV
i and

eW
j are basis vectors of V and W , we construct a basis for V ⊗W by defining

the abstract basis vectors

ei,j = eV
i ⊗ eW

j , (A.4)

which obey the properties

1. Symmetry: eV
i ⊗ eW

j = eW
j ⊗ eV

i .

2. Homogeneity: (λeV
i )⊗ eW

j = λ(eV
i ⊗ eW

j ).

3. Additivity: eV
i ⊗ (eW

j + eW
k ) = eV

i ⊗ eW
j + eV

i ⊗ eW
k .

Together, these properties assure that the tensor product is bilinear (linear in

both arguments). It also follows that, using standard representations for V and

W , the coefficients ui,j for u = (v ⊗ w) ∈ U are given by

ui,j = (v ⊗ w)i,j = viwj , (A.5)

for v ∈ V and w ∈ W . When elements from V are represented as row vectors

and elements from W as column vectors, the tensor product is just the dimV ×

dimW matrix containing products of the coefficients. Also, the dimension

dim(V ⊗W ) = dimV · dimW .

Given two vector spaces V and W , it is possible to construct a new vector space

Z = V ⊕W as follows. If eV
i and eW

j are basis vectors of V and W , we construct

a basis for V ⊕W by defining the abstract basis vectors

ek = eV
i ⊕ eW

j , (A.6)

which obey the properties

1. Symmetry: eV
i ⊕ eW

j = eW
j ⊕ eV

i .

2. Distributivity of scalar multiplication: λ(eV
i ⊕ eW

j ) = (λeV
i )⊕ (λeW

j ).

3. Distributivity of the sum: (eV
i +eV

i′ )⊕(eW
j +eW

j′ ) = (eV
i ⊕eW

j )+(eV
i′ ⊕eW

j′ ).

These properties assure that every vector in z ∈ Z can be uniquely expressed

as v ⊕ w with v ∈ V and w ∈ W . A representation of z is obtained simply by

concatenating the representations of v and w:

z = (v, w) = (v1, v2, . . . , vdim V , w1, w2, . . . , wdim W ), (A.7)

and we have dim(V ⊕W ) = dimV + dimW .
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B Some background on the sampling algorithms

Consider again the finite set ΩX of Eq. (25). A markov process on ΩX is a

process where elements of ΩX are chosen sequentially and randomly with re-

placement, and the probability of selecting an element x(τ + 1) is conditional

only on the previous selection x(τ). The sequence {x(τ) | τ = 0, 1, . . .}, with

x(0) some chosen value, generated in this way is called a markov chain or ran-

dom walk, and it can be thought of as a sequence of realisations of random

variables Xτ . Consequently, a |ΩX | × |ΩX | transition matrix T can be con-

structed of which the elements elements are the conditional probabilities

Txx′ = P[Xτ+1 = x′|Xτ = x]. (B.8)

Obviously all elements of T are nonnegative and
∑

x′ Txx′ = 1. Furthermore, the

transition matrix (and the corresponding markov chain and Markov process) is

called irreducible if there is no permutation matrix U such that U ′TU = T1⊕T2.

Irreducibility means that for every x and x′ ∈ ΩX there is at least one finite

markov chain containing x and x′. From here, all mentioned markov chains are

assumed irreducible.

It is a standard result from markov chain theory that regardless of the start-

value x(0), the distribution of elements in a markov chain converges to a fixed

distribution p over ΩX as τ increases. Here, p = {px = p(x) |x ∈ ΩX} is the

unique left eigenvector of T with unit eigenvalue, or

pT = p. (B.9)

Thus, a random sample from (ΩX , p) can be obtained by generating a suffi-

ciently long markov chain and taking the final element as a drawing.

Given a probability distribution on ΩX , such as the one given in Eq. (27), there

are in general many choices for T . The Metropolis-Hastings algorithm uses a

particularly simple choice for T , which can be derived as follows. First, write

T as T = T (0) + T (1), where T (0) has zeros on the diagonal and T (1) contains

only the diagonal elements of T . The condition in Eq. (B.9) then yields

px′ =
∑

x∈ΩX

pxTxx′ =
∑

x∈ΩX

pxT
(0)
xx′ + px′T

(1)
x′x′ . (B.10)

Using T
(1)
x′x′ = 1−

∑

x T
(0)
x′x, we get

∑

x∈ΩX

px′T
(0)
x′x =

∑

x∈ΩX

pxT
(0)
xx′ . (B.11)

One particular choice for which the above condition holds is when T obeys the

microreversibility conditions

px′Tx′x = pxTxx′ . (B.12)
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It is not difficult to check that the choice

Txx′ = min

{

px′

px
, 1

}

(B.13)

obeys these conditions. An important consequence of the above is that the

distribution p does not need to be normalized, since only the ratio p(x′)/p(x)

needs to be computed. In order to derive an algorithm to generate a random

walk, the elements of T can be written as:

Txx′ = min

{

px′

px
, 1

}

= r(x′|x)q(x, x′), (B.14)

where r(x′|x) is the probability that element x′ is generated from point x and

q(x, x′) is the probability that the step is actually taken. There is some liberty

in choosing r and q. In particular, if r(x′|x) = r(x|x′) we have q(x, x′) =

min{p(x′)/p(x), 1} from the microreversibility conditions. Instead of directly

generating x′, a vector v can be generated so that x′ = x+ v. The step vector

v must be drawn from a set of vectors large enough to ensure irreducibility

of the markov chain. This introduces the concept of a markov basis, which is

the subject of the next section. The markov basis with elements vrs for ΩX

is given explicitly in Eq. (C.18). In effect, the Metropolis-Hastings sampler

is defined by Txx′ = U{vrs}q(x, x + vrs) if x′ = x + vrs and zero otherwise.

Here U{·} is the probability of drawing vrs under the uniform distribution over

the markov bases. It is a property of Markov bases that they do not need

to be minimal in order to obtain the convergence property in Eq. (B.9). In

that sense, the Gibbs sampler is just an extension of the Metropolis-Hastings

algorithm, and is characterized by Txx′ = U{vrs}q(x, x + kvrs) for all k for

which x′ = x+ kvrs ∈ ΩX .

C A proof for the markov basis

This section is aimed to show that the set of vrs steps of section 4.1 is indeed

a valid markov basis. It also serves as a glance at the formulation used in

the calculation of markov bases for more general problems, for example when

certain marginals of a contingency table are fixed.

The most important property of elements in ΩX is that the sum
∑

t xt = n for

all x ∈ ΩX . It will be convenient to define the following linear map:

π : ⊗m
i=1Z

di

≥0 → Z≥0, πx =
d−1
∑

t=0

xt. (C.15)

We are now able to define a markov basis.
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Definition C.1. A set BX of vectors v ∈ Z
d is a markov basis for ΩX if

π(x+ v) = πx ∀x ∈ ΩX , (C.16)

and for all x and x′ ∈ ΩX , there is a finite sequence of pairs (v(τ), ε(τ)) with

ε(τ) ∈ {±1} so that

x′ = x+
∑

τ

ε(τ)v(τ). (C.17)

The first demand makes sure that no steps outside ΩX are allowed and the

second demand ensures irreducibility.

A markov basis for ΩX is given explicitly by

BX = {vrs ∈ Z
d | vrs

t = δrt − δst, 0 ≤ t ≤ d− 1}. (C.18)

Before we can proof this, we need to introduce two notions from the theory of

polynomial rings. A ring of polynomes k[z0, z2, . . . , zd−1] is the set of all poly-

nomes generated by taking finite products and linear combinations of abstract

variables zi. Every element f ∈ k[z0, z1, . . . , zd−1] can be written as

f =
∑

α

aαz
α, (C.19)

where we use the shorthand notation zα = zα0

0 zα1

1 · · · z
αd−1

d−1 , α ∈ Z
d
≥0 and the

linear coefficients aα ∈ k where k is any field, for example the complex numbers.

The second notion is that of an ideal. An ideal J is a subset of k[z0, z1, . . . , zd−1]

which is closed under finite linear combinations and multiplication. It was

shown by Hilbert (1890) [but see Cox et al. (2007)] that every ideal has a finite

set of generators g1, g2, . . . , gk such that every h ∈ J can be written as a finite

sum

h =
k
∑

i=1

gifi, (C.20)

where all fi ∈ k[z0, z1, . . . , zd−1]. In particular, if J is generated by g1, g2, . . . , gk,

we write

J = 〈g1, g2, . . . , gk〉. (C.21)

Now, consider the lifting of π defined by

π̂ : k[z0, z1, . . . , zd−1] → k[w], π̂(f) =
∑

α

aαw
πα, (C.22)

with f as in Eq. (C.19). Thus, lifting just means that we let π act on the

vectors of exponents of a polynomial, and change the number of variables of

36



the polynomial accordingly. It follows that π̂(f +g) = π̂(f)+ π̂(g) and π̂(fg) =

π̂(f)π̂(g). We also define the kernel of π̂, given by all h ∈ k[z0, z1, . . . , zd−1] for

which π̂(h) = 0. It follows that ker π̂ is an ideal. Note that the demand in Eq.

(C.16) shows that every vrs ∈ BX must be in kerZ π, the integer kernel of π.

It was shown by Diaconis and Sturmfels (1998) that the second demand [Eq.

(C.17)] is obeyed if and only if there is a one-to-one correspondence between

the generators of the kernel of π̂ and the elements of the markov basis. Here

we specialize their theorem to our case.

Theorem C.2 (Specialization of Thm. 3.1 of Diaconis and Sturmfels (1998)).

Consider the set BX of Eq. (C.18) and write vrs as the vector difference vrs =

αr
+−α

s
−. Vector αr

+ has unit rth coefficient and is zero elsewhere, and likewise

for αs
−. Also define Ωπ = {x ∈ Z

d
≥0|πx = n}. The set BX is a markov basis for

ΩX if and only if the ideal

Jπ̂ = 〈zαr
+ − zαs

− | 0 ≤ r, s ≤ d− 1〉 = ker π̂. (C.23)

Proof. The proof of this theorem is stated in the reference and will not be

repeated here.

Proposition C.3. The set BX , defined in Eq. (C.18) is a markov basis for Ωπ.

Proof. To show that BX is indeed a markov basis, we need to show that Jπ̂

obeys the equality in Eq. (C.23). First we will show that Jπ̂ ⊆ ker π̂. The

action of π̂ on any generator yields

π̂(zαr
+ − zαs

−) = wπαr
+ − wπαs

− = 0, (C.24)

since παr
+ = παs

− = 1. Next, we show that ker π̂ ⊆ Jπ̂. Suppose h =
∑

β aβz
β ∈

ker π̂, then

π̂(h) =
∑

β

aβw
πβ = 0. (C.25)

This can only happen when all nonzero aβ occur in pairs aβ+
, aβ− with aβ+

=

aβ− ≡ aβ± and πβ+ = πβ−, so Eq. (C.25) has terms

aβ+
wπβ+ − aβ−w

πβ− = aβ± π̂(zβ+ − zβ−) = 0. (C.26)

We now need to show that (zβ+ − zβ−) ∈ Jπ̂. First divide out common factors

so (zβ+ − zβ−) = zγ(zβ′
+ − zβ′

−). It follows that πβ′+ = πβ′− and β′+ ⊥ β′−. To

show that zβ′
+ − zβ′

− ∈ Jπ̂, write

zβ′
+ − zβ′

− = zrg+ − zsg−

= g+(zr − zs) + zs(g+ − g−), (C.27)
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with zr and zs factors of zβ′
+ and zβ′

− respectively. The first term is obviously

an element of Jπ̂ and the binomial g+ − g− is of lesser degree than zβ′
+ − zβ′

− .

The above procedure can be applied recursively to the second term because the

exponent vectors of g+ and g− inherit the properties of β ′+ and β′− under action

of π. This shows that indeed h ∈ Jπ̂.

Remember that the set of valid contingency tables [Eq. (25)] can be written as

ΩX = Ωπ ∩ {x ∈ Z
d
≥0|xt = 0 when t ∈ I} ∩ {x ∈ Z

d
≥0|Ax ≥ b}. (C.28)

Corollary C.4. BX contains a markov basis for ΩX .

Proof. The inclusion of edit restrictions I reduces d to d − |I|, and does not

change the conditions of the proposition. The restrictions Ax ≥ b imply that

ΩX is the intersection of Ωπ with a collection of half-spaces. ΩX is thus a convex

subset of Ωπ. Since BX is a markov basis for Ωπ, (a subset of) BX is a markov

basis for ΩX ⊆ Ωπ.

Remarks. As stated before, Thm. (C.2) is a specialization of Thm. 3.1 in

Diaconis and Sturmfels (1998). The specialization concerns the map π. In

the general form, π can be any linear map Z
d
≥0 7→ Z

k
≥0 with k ≤ d, where

the most important example is the map which computes marginals of x. The

formulation in terms of ideals has as advantage that general algorithms such as

the Buchberger algorithm are available to compute the generating set. See for

example Cox et al. (2007) for an accessible introduction. A good introduction to

the theory of markov bases for contingency tables can also be found in Sullivant

(2005) or Drton et al. (2008). The ideal Jπ̂ of Eq. (C.23) is called a binomial

ideal or a toric ideal. The theory of of toric ideals is described thoroughly in

Sturmfels (1996).

In principle, markov bases can be computed for any linear map π although the

Buchberger algorithm can have extremely high computational time- and mem-

ory complexity as a function of the dimension d of the contingency table. Soft-

ware implementing (improved versions of) the Buchberger algorithm is available

for free, for example in the 4ti2 package (4ti2 team) or in the Macaulay 2 environ-

ment (Grayson and Stillman). Among the most studied cases are those where

π fixes all marginals of a table. In that case, even the calculation of markov

bases of for example 4 × 4 × 4 × 4 contingency tables seems computationally

not feasible. Some special cases are known however. Diaconis and Sturmfels

(1998) use an earlier version of Macaulay to compute the basis for the 3× 3× 3

case with fixed line sums (sums over one index at the time). They also give the

general result for 2 × J × K tables. Aoki and Takemura (2003b) have deter-

mined the general basis for 3 × 3 ×K tables with fixed 2D marginals. It was
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already shown by Diaconis and Sturmfels (1998) that markov bases for tables

with fixed marginals can be described in terms of several types of indispensable

moves. Aoki and Takemura (2003a) list indispensible moves for 3× 4×K and

4× 4× 4 contingency tables with fixed 2D marginals.
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