
Statistics Netherlands

Discussion paper (201215)

The views expressed in this paper are those of the author(s)
and do not necessarily reflect the policies of Statistics Netherlands

The Hague/Heerlen, 2012

112
Mark van der Loo and Edwin de Jonge

Manipulation of conditional
restrictions and error
localization with the
editrules package

Explanation of symbols

. data not available

* provisional � gure

** revised provisional � gure (but not de� nite)

x publication prohibited (con� dential � gure)

– nil

– (between two � gures) inclusive

0 (0.0) less than half of unit concerned

empty cell not applicable

2011–2012 2011 to 2012 inclusive

2011/2012 average for 2011 up to and including 2012

2011/’12 crop year, � nancial year, school year etc. beginning in 2011 and ending in 2012

2009/’10–
2011/’12 crop year, � nancial year, etc. 2009/’10 to 2011/’12 inclusive

 Due to rounding, some totals may not correspond with the sum of the separate � gures.

Publisher
Statistics Netherlands
Henri Faasdreef 312
2492 JP The Hague

Prepress
Statistics Netherlands
Grafimedia

Cover
Teldesign, Rotterdam

Information
Telephone +31 88 570 70 70
Telefax +31 70 337 59 94
Via contact form:
www.cbs.nl/information

Where to order
E-mail: verkoop@cbs.nl
Telefax +31 45 570 62 68

Internet
www.cbs.nl

ISSN: 1572-0314

© Statistics Netherlands,
The Hague/Heerlen, 2012.
Reproduction is permitted,
provided Statistics Netherlands is quoted as source.

60083201215 X-10

Manipulation of conditional restrictions and error
localization with the editrules package.

Mark van der Loo and Edwin de Jonge

Summary: The quality of statistical statements strongly depends on the qual-

ity of the underlying data. Since raw data is often inconsistent or incomplete,

data editing may consume a substantial amount of the resources available for

statistical analyses. Although R has many features for analyzing data, the func-

tionality for data checking and error localization based on logical restrictions

(edit rules, or edits) is currently limited. The editrules package is designed to of-

fer a user-friendly toolbox for edit definition, edit manipulation, data checking,

and error localization.

Previous versions of the package could handle either numerical or categorical

datasets. In this paper we describe new functionality pertaining to mixed nu-

merical and conditional data as well as functionality pertaining to conditional

restrictions. Other additions to the package include the ability to read edits

from free-form text files and faster error localization under certain conditions.

This paper marks the release of editrules package version 2.5.

Keywords: Statistical data editing, error localization, Fellegi-Holt, backtrack-

ing, statistical software

3

Contents

1 Introduction 5

2 Mixed data and conditional edits 6

2.1 Reading and writing edits . 6

2.2 Edit checking, obvious redundancy and obvious infeasibility . . . 10

2.3 Visualizing and disentangling edits 11

3 Manipulation of conditional edits 14

3.1 Value substitution . 15

3.2 Variable elimination and satisfiability 16

4 Error localization in mixed data 18

4.1 Error localization with localizeErrors and errorLocalizer 18

4.2 Some details on implementation 19

5 Conclusions 19

4

1 Introduction

The quality of raw (survey) data is rarely sufficient to allow for straightforward

statistical analyses. Indeed, it has been estimated that National Statistics Of-

fices may devote as much as 40% of their resources to data editing activities (De

Waal et al., 2011). For reasons of efficiency and reproducibility it is therefore

highly desirable to automate data editing processes.

In the practice of (official) statistics, data records are often required to obey

various restrictions, including sum rules, positivity demands or other linear

inequalities and categorical restrictions that exclude certain value combinations.

Such rules are called edit rules or edits in short, and a data record is called

inconsistent when it violates one or more edits. The goal of data editing is

to remove inconsistencies while leaving the reported data intact as much as

possible.

Data editing is severely complicated by the fact that edit rules are often in-

terrelated: a variable can occur in more than one restriction, and a restriction

can contain multiple variables. For example, a variable in an account balance

may occur in several sum rules, creating a dependency between those rules. It

is common in data editing literature to distinguish between linear restrictions,

categorical restrictions and conditional restrictions. Linear restrictions are lin-

ear (in)equality restrictions such as range restrictions and sum rules pertaining

to numerical data. Categorical restrictions are rules that exclude invalid value

combinations from a categorical dataset. We have discussed the implementa-

tion of linear rules previously in De Jonge and van der Loo (2012) and the

implementation of categorical rules in Van der Loo and De Jonge (2011b). In

this paper we discuss new functionality of the R extension package editrules

pertaining to the third category: conditional restrictions.

Conditional restrictions are a generalization of numerical and categorical rules,

and can therefore pertain to both numerical and categorical variables. As an

example of such a restriction, consider the following demand on a business

survey record:

If the legal form (of a business) is self-employed, the number of

employees must be zero.

This statement restricts the combined value range of a categorical variable

(legal form) with that of a numerical variable (number of employees). The rule

is called a conditional restriction since it is written in an if-then form where the

first part (“If the legal form is self-employed”) states the condition under which

the demand in the second part (“the number of employees must be zero”) must

5

hold. In the rest of this paper we will refer to the first part as the predicate

and to the second part as the consequent, as this appears to be the common

terminology used in computer science.

De Waal (2003) and De Waal and Quere (2003) showed that every edit contain-

ing categorical as well as numerical restrictions can be written in such a form.

That is, all restrictions on categorical data occur in the predicate and numerical

restrictions occur in the consequent expression. The formulation encompasses

the formulation of non-conditional numerical or categorical rules by choosing

appropriate truth values for predicate or consequent. Additionally, rules con-

necting two or more numerical restrictions occur in practice as well, as shown

by the following example.

If the number of employees is positive, the amount of salary payed

must be positive.

The latest version of editrules presented here (version 2.5) is now capable of

managing conditional edits with a conditional as well as with a numerical pred-

icate.

The rest of this paper is structured as follows. In Section 2 we describe which

restrictions can be handled by the package, and introduce the central R object

for storing and manipulating conditional restrictions: the editset object. In

Section 3 we provide details on the most important edit manipulations that

the package provides and Section 4 is devoted to error localization. Examples

in R code are given throughout to help new users getting started with this

functionality.

2 Mixed data and conditional edits

The term mixed data is used in this paper to indicate data containing both

numerical and categorical data. We do not distinguish between integer and real

numbers here: currently, both are handled as real numbers by editrules. We

also do not distinguish between logical and categorical data: under the hood,

editrules handles these data types as character, although a user need not consider

this when specifying types (see also Van der Loo and De Jonge (2011b)).

2.1 Reading and writing edits

In previos versions of editrules, edits could be read from character vectors where

each element contains a rule in textual form. For version 2.5, the parsing

capabilities have been extended to allow for rules in free-form textfiles or in

6

define category domains

BOOL <- c(TRUE,FALSE)

OPTIONS <- letters[1:4]

(conditional) numerical edits

x + y == z

2*u + 0.5*v == 3*w

w >= 0

if (x > 0) y > 0

if (x > y) z < 10

x >= 0

y >= 0

z >= 0

categorical and mixed data edits

A %in% OPTIONS

B %in% OPTIONS

C %in% BOOL

D %in% letters[5:8]

if (A %in% c('a','b')) y > 0

if (A == 'c') B %in% letters[1:3]

if (!C == TRUE) D %in% c('e','f')

Figure 1. Example of a free-form text file defining numerical, categorical and

conditional edits. The edits can be read into R with the editfile function.

7

expression vector form. From a user perspective, the free-form textfiles are

the most convenient when working reproducibly with (large) rule sets. The

capabilities for parsing expression vectors is usefull when defining rules ad hoc

on the command line. An overview of edit reading and coercing functions is

given in Table 1.

As an example, Figure 1 shows the contents of an example text file that is
included with the package. Note that the domains of categorical variables (the
data model) may be defined separate from the edits. This is convenient for
domains which are reused over several variables or for large domains that need
to be read from file. Numerical and categorical edits can be submitted as they
would for objects of class editmatrix or editarray respectively, while conditional
edits must follow the following syntax diagram.

-- if(

� � &� && �� �
� �〈linear inequality〉� 〈set expression〉 �� �)

� � |� || �� �
� �〈linear inequality〉� 〈set expression〉 �� � -�

Here, & and && and | and || are synonyms. The symbol 〈set expression〉 is an

expression indicating set membership for categorical values, for example A %in%

c("a","b"). See Van der Loo and De Jonge (2011b) for a syntax diagram of

possible set expressions. Comments, (preceded by a #) are allowed as well, and

will be ignored by the parser.

Since the file of Figure 1 is included with the package it can be read as follows.

> myfile <- system.file("script/edits/myedits.txt",

+ package="editrules")

> (E <- editfile(myfile))

Data model:

dat1 : A %in% c('a', 'b', 'c', 'd')

dat2 : B %in% c('a', 'b', 'c', 'd')

dat3 : C %in% c(FALSE, TRUE)

dat4 : D %in% c('e', 'f', 'g', 'h')

Edit set:

num1 : x + y == z

num2 : 2*u + 0.5*v == 3*w

num3 : 0 <= w

num4 : 0 <= x

num5 : 0 <= y

num6 : 0 <= z

cat7 : if(A == 'c') B != 'd'

cat8 : if(C == FALSE) !(D %in% c('g', 'h'))

mix9 : if(0 < x) y > 0

8

mix10 : if(y < x) 10 > z

mix11 : if(A %in% c('a', 'b')) y > 0

In the first line, the example file is located using R’s built-in system.file com-

mand. The second line is where the actal work is done: the function editfile

takes a filename (including the path) as argument, reads and parses the edits

in the file and returns an object of class editset, here stored in variable E. The

extra brackets around the second statement are only added to force R to print

the result to screen.

When an editset is printed, the data model for categorical variables, as well as

the textual representation of the edits are shown. For convenience, edits are

named according to their type. Pure numerical edits are numbered with prefix

num, pure categorical with prefix cat and conditional edits are prefixed with

mix.

The function editfile has an optional type argument, allowing for extracting

only the numerical (type=”num”), categorical (type=”cat”) or conditional edits

(type=”mix”) from the text file. When type=”num” or type=”cat”, an editmatrix

or editarray is returned respectively. Using these more specialized objects yields

some performance enhancement for common operations such as value substi-

tution and variable elimination. Under the hood, editfile parses the file, looks

for assignments (by <- or =) and evaluates them in a separate R environment.

Next, the edits are generated within that environment.

Edits can be selected with the bracket operator, using integer or logical indices,

for example:

> E[c(7,10),]

Data model:

dat1 : A %in% c('a', 'b', 'c', 'd')

dat2 : B %in% c('a', 'b', 'c', 'd')

dat3 : C %in% c(FALSE, TRUE)

dat4 : D %in% c('e', 'f', 'g', 'h')

Edit set:

cat1 : if(A == 'c') B != 'd'

cat2 : if(y < x) 10 > z

By default, the full data model is retained when selecting a subset of edits. The

reduce function can be used to remove variables not occurring in any edit from

an editset object.

To export edits, the most convenient way is to use either as.character to convert

an editset to text or as.data.frame to convert it to a 2-column data.frame. One

9

Table 1. Functions for reading and coercing (conditional) edits.

Function Description

editfile read from free-form textfile

editset read from character or expression vector

as.character convert editset to character vector

as.data.frame convert editset to two-column data.frame

can then use R’s standard I/O functionality to store edits as a structured text

file, or use one of the database interfaces to send edits to a database.

2.2 Edit checking, obvious redundancy and obvious infeasibility

Data can be checked against edits in an editset with the violatedEdits function.

This function accepts an editset and a data.frame and returns a logical array (of

class violatedEdits) where each row and column indicates which record violates

what edit. A summary and plot method is available for violatedEdits objects

so users can get a quick overview of edit violation frequencies. Internally, the

violatedEdits method for editsets works by coercing the edits to logical character

expression and using R’s evaluation functionality to parse and evaluate these

expressions in the context of the data.frame.

An edit in an editset is obviously redundant when it is the duplicate of another

edit or when it has an easily recognizable form such as 0 < 1. Such redundancies

may arise after edit manipulations (value substitution, variable elimination).

The isObviouslyRedundant method for editset returns a logical vector indicating

which edit in an editset is redundant (true) or not (false). If the editset

was separated in independent conditional editsets by disjunct, a list of boolean

vectors is returned. For a detailed description of detecting obvious redundancies

in numerical or categorical edits, we refer to De Jonge and Van der Loo (2011)

and Van der Loo and De Jonge (2011b).

An edit in an editset is obviously infeasible when it contains an easily recog-

nizable self-contradicting edit, such as 0 > 1. The function isObviouslyInfeasible

returns true for editsets containing one or more obvious contradictions in nu-

merical or categorical edits. Note that when isObviouslyInfeasible returns false,

this does not guarantee that the set of edits is consistent. Contradictions may

still be implied by the edits. Finding out whether a set of edits is satisfiable

can be far more computationally intensive. We will return to this problem in

Section 3.2.

10

num1

num2

num3

num4

num5

num6

cat7

cat8

mix9

mix10

mix11

x

y

z

u

v

w

A

B

C

D

Figure 2. Dependency graph of edits defined in Figure 1. The squares represent

edit rules, and the circles represent variables. An edge indicates that a variable

occurs in an edit.

2.3 Visualizing and disentangling edits

As stated in the introduction, the fact that edits are entangled by shared vari-

ables severely complicates data editing: changing the value of a variable to solve

an edit violation may cause the violation of another edit.

To make data editing more tractable, it is desired to break entangled sets of

edits into smaller independent subsets as much as possible. Table 2 gives an

overview of edit separation functions available in the editrules package. The

most important ones will be discused below.

As an example, consider the dependency graph of the edits introduced in Figure

1. The graph can be generated by issuing the command

> plot(E)

and is depicted in Figure 2. A dependency graph represents the rules (squares)

and variables (circles) that occur in an editset. A line is drawn between a

square and a circle if the variable corresponding to the circle occurs in the

rule represented by the square. Internally, the graph is generated by calling

contains on E, which returns a logical matrix that indicates which edit contains

which variables. Next, this matrix is converted to an igraph object and plotted

with the igraph0 package (Csardi and Nepusz, 2006). The plot methods for

11

y < x, 0 < y, 0 < x

●

●●

●

●
●

●

●
●

●

num1

num2

num3

num4

num5

num6
num7

num8

cat1
cat2

u

vw

x

y
z

A

B
C

D

x <= y, 0 < y, 0 < x

●

●

●
●

● ●

●
●

●
●

num1

num2

num3

num4

num5 num6

num7

cat1

cat2

u

v

w

x

y z

A
B

C

D

x <= y, y <= 0, x <= 0

●
●

●

●

●
●

●

●

●

●

num1

num2

num3

num4
num5

num6

cat1

cat2

cat3

x
y

z

u

v

w

A

B

C

D

x <= y, 0 < y, x <= 0

●
●

●

●

●
●

●

●

●

●

num1

num2
num3

num4

num5

num6

cat1

cat2

x

y

z

u

v

w

A

B

C

D

Figure 3. Dependency graphs of the conditional editsets generated from the

edits of Figure 1. There are no paths from numerical variables (x, y, z, u, v,

w) to categorical variables (A, B, C, D) anymore. The titles of the subplots

indicate the predicates for each editset. Edits with the same name contain the

same variables but not necessarily the same condition on those variables across

subplots.

editset, editmatrix and editarray have several options for coloring violated edits

or erroneous variables. Refer to the built-in documentation of the package for

an extensive overview and examples.

The dependency graph clearly shows that our example set can be split into three

unrelated blocks. These blocks (corresponding to columns of data) can therefore

be treated separately when performing edit manipulations. Since important

manipulations such as variable elimination have exponential complexity in the

number of edits, recognizing such blocks can considerably enhance performance.

The higher-level error localization function that will be discussed in section

4.1, in fact does detect and exploit this block structure, so users need not

concern themselves with it directly. To facilitate edit rule investigation and

12

maintenance, the lower-level blocks function is also exported to user space.

This function returns a list of the independent editsets, as illustrated by the

following example.

> sapply(blocks(E),nedits)

[1] 8 2 1

Here, nedits counts the number of edits in an editset and sapply makes sure that

nedits is applied to each member of the list returned by blocks. Clearly, the

three independent blocks with 8, 3 and 1 edits (Figure 2) have been found.

The largest cluster of edits in Figure 2 connects numerical variables with cat-

egorical variables. Operations such as variable elimination are difficult to im-

plement for such edit sets. However, it is possible to split up such a set further

by working out what happens when we assume statements in the predicate or

consequent to be true or false.

Consider again the edits on page 9. As an example, assume that x > 0 in mix9.

We then know that y > 0 must hold. This means that num5 becomes redundant

and mix11 reduces to y > 0 and becomes therefore redundant. On the other

hand, when we assume x ≤ 0, then mix9 can be dropped, since the value of

y has become unimportant for that edit. Combined with num4, assuming that

x ≤ 0 this means that x = 0.

The assumption x > 0 and x ≤ exclude each other. Working out their conse-

quences therefore yield two different edit sets which cannot be obeyed fully by a

record at the same time. If we continue making assumptions for the numerical

statements in conditional edits recursively and work out their consequences, we

get a list of conditional editsets where for each editset, the dependencies between

categorical and numerical edits have been severed.

The function disjunct implements this procedure. It speeds up computation by

detecting whenever contradictory assumptions have been made. The function

returns a list of conditional editsets or optionally, an R environment containing

those editsets. The conditions pertaining to each editset can be retrieved us-

ing the condition function. Figure 3 shows the dependency graphs of the four

conditional editsets resulting after calling

> disjunct(E)

The conditional editsets form an equivalent representation of the original set and

have the advantage that operations such as variable elimination (and therefore

error localization) can be performed separately for each set. Note that in Figure

13

Table 2. Edit separation functions. Each function accepts an editset as input.
Function Description

contains Detects which edit contains which variable

plot Plot the dependency graph

blocks Splits an editset in independent edits not sharing any variables

disjunct Splits an editset in disjunct sets, not containing mixed edits

condition Returns the editmatrix holding the conditions for an editset gen-

erated by disjunct

separate Uses blocks, simplifies the results, and calls disjunct on the re-

maining editsets

3, there are no paths running from numerical to categorical variables anymore.

The downside is that for large, strongly connected edit sets, separation into

disjunct sets can be a computationally daunting task, growing exponentially

in the number of edits. We will shortly return to this problem in section 4.

More background on manipulation of categorical edits will be descibed in a

forthcoming paper (Van der Loo and de Jonge, 2012). Here, we just note

that there are four numerical edits in the example set of Figure 1, yielding

24 = 16 possible assumptions for their respective truth values. In principle this

means that sixteen editset objects should be derived. However, because some

assumptions conflict, only four subsets are generated. For example, the reader

may veryfy that assuming that x ≤ 0 and y > 0 and y < x are contradictory

demands.

Finally, we note that the utility function separate performs both the block de-

composition based on variable occurrence and calls, when appropriate, the dis-

junct function on conditional edits. The results are simplified as much as pos-

sible and returned in a list.

3 Manipulation of conditional edits

The two basic operations on any set of restrictions, either numerical, categorical,

or conditional, are value substitution and variable elimination. Methods for

the pure numerical and pure categorical situations are fairly straightforward

and have been implemented in the editrules package before. Operations on

conditional edits require a bit more care, which will be detailed in the next two

subsections.

14

3.1 Value substitution

Assigning a value to a variable occurring in an editset can be done with the

substValue function. The consequences of substituting a value in conditional

edits require a bit more care than for simple linear or categorical edits. Recall

the truth table for the logical implication of q by p, denoted p→ q:

p q p→ q

true true true

true false false

false true true

false false true

When either predicate or consequent of a conditional edit resolves to a truth

value after substituting a variable, the remaining edits must be processed ac-

cording to this table. As a demonstration, consider the following simple editset,

consisting of a single conditional edit.

> X <- editset("if (x > 0) y > 0")

Substituting a value for x so that the predicate holds, obviously yields a nu-

merical edit.

> substValue(X,'x',1)

Edit set:

num1 : 0 < y

Substituting a value so that the predicate does not hold yields an empty editset

since the condition in the consequent only has to be obeyed when the predicate

holds.

> substValue(X,'x',-1)

Edit set:

NULL :

The same happens when we enter a value for y so that the consequent holds:

> substValue(X,'y',1)

Edit set:

NULL :

15

since in that case, the value of the predicate is unimportant. On the other

hand, when the restriction in the consequent resolves to false, the predicate

cannot be true and must be inverted.

> substValue(X,'y',-1)

Edit set:

num1 : x <= 0

Observe that the substValue function recognizes that the remaining edits are

purely numerical.

3.2 Variable elimination and satisfiability

Variable elimination is the mechanism by which edits, logically implied by a set

of (user-defined) edits, are derived. Variable elimination amounts to deriving all

implicit edit rules from a set of edits which do not contain the eliminated vari-

able anymore. For an editset object, it is executed by first separating the edits

in disconnected sets as described in Section 2.3. Next, variables are eliminated

from the separate numerical or categorical parts of every separate conditional

editset.

As an example, we will eliminate variable y from the following set of conditional

edits.

G =


if x ≥ 0 then y ≥ 0

if x ≥ 0 then x ≤ y

if x < 0 then y < 0

if x < 0 then x− y < −2.

(1)

Observe that these edits are all connected, since all of them contain both x and

y. In Figure 4, the valid areas in the xy-plane defined by these edits are shown

in grey. Because of their conditional structure, the edits define two disjunct

subregions. Informally, if x < 0, a record (x, y) must be in the left grey region

and if x ≥ 0, it must be in the right grey region.

Recall that geometrically, eliminating a variable from a set of linear (in)equalities

amounts to a projection along the corresponding axis. Here, eliminating y

amounts to projecting the grey areas along the y-axis, yielding two separate

line segments, shown in bold in Figure 4.

Figure 5 shows how to perform the elimination with the editrules package. In

the first line, the edits are defined, using an expression vector as input. In the

second line, variable y is eliminated by calling eliminate. The result is an object

16

●
x

y

Figure 4. Graphical representation (in gray) of the valid areas defined by the

edits of Eq. (1). Depicted are sections of the bordering lines y = x and y = x+2.

The bold lines indicate the projections of the gray areas along the y-axis.

> G <- editset(expression(

+ if (x >= 0) y >= 0,

+ if (x >= 0) x <= y,

+ if (x < 0) y < 0,

+ if (x < 0) x - y < -2

+))

> eliminate(G,"y")

editsets:

Set 1 conditions:

0 <= x

Edit set:

NULL :

Set 2 conditions:

x < 0

Edit set:

num1 : x < -2

Figure 5: Eliminating a variable from an object of class editset results in a

number of editsets which are stored in an editlist object.

of class editlist, containing two editsets. The first editset holds when x ≥ 0 and

holds no further restrictions: the restriction x ≥ 0 corresponds exactly with the

projection of the right grey area of Figure 4 on the x-axis. The second editset

17

holds when x < 0, and imposes that in that case x < −2.

4 Error localization in mixed data

Given that a record violates a number of edit rules, the problem remains to

point out which fields cause the error. When there is no clear evidence pointing

out which variables cause the violations, one can resort to adapting as few

variables as possible. Adapting as few variables as possible, without violating

any new, implied rules is referred to as the principle of Fellegi and Holt (1976),

who described the first systematic approach to error localization.

4.1 Error localization with localizeErrors and errorLocalizer

In editrules, errors can be localized according to Felligi and Holt’s principle using

the localizeErrors function. This function has been introduced earlier for purely

numerical data (De Jonge and Van der Loo, 2011) and for purely categorical

data (Van der Loo and De Jonge, 2011a), and has now been extended to handle

conditional edits.

The interface of localizeErrors is exactly the same as described in the references

above. The minimal input is an editset and a data.frame and the output is an

object of class errorLocalizer, which holds error locations as well as some logging

info. Below we give a simple demonstration.

> E <- editset(expression(

+ if (x > 0) y > 0,

+ x + y == 10

+))

> dat <- data.frame(x = 1, y = -5)

> el <- localizeErrors(E,dat)

> el$adapt

x y

1 TRUE FALSE

> el$status

weight degeneracy user system elapsed maxDurationExceeded

1 1 2 0.012 0 0.015 FALSE

In the first line we define an edit set demanding that when x > 0, then y > 0

and that x and y must add up to 10. The second line defines a record where

18

(x = 1, y = −5). Obviously, this record violates both restrictions. The errors

may be resolved by either adapting y or x and y. The former solution is the

minimal case and this is what localizeErrors returns in line 3: the array el$adapt

indicates with a boolean value which variable in which record must be changed.

The data.frame el$status gives information on the total solution weight, the

number of equivalent solutions (degeneracy) and the amount of time it took to

compute the solution.

4.2 Some details on implementation

The error localization problem consists of finding the least (weighted) number

of fields in a record that can be adapted or imputed, such that no edits are

violated anymore. De Waal (2003) developed a branch-and-bound algorithm

which computes solutions to the localization problem by systematically build-

ing and testing partial solutions. The computational time necessary for the

algorithm to complete is exponential in the number of variables. Therefore,

partial solutions which cannot lead to a solution are abandoned (pruning) as

much as possible. To decrease the number of variables entering the branch-

and-bound algorithm, edits sets are separated in independent blocks (using the

blocks function). Since version 2.5 of editrules, error localization is accelerated

further by adding variables which violate univariate constraints to the solution

set prior to entering the branch-and-bound algorithm.

Because for conditional edits, an editset must be separated by the disjunct func-

tion described earlier, error localization using the branch-and-bound approach

can become computationally expensive when many entangled conditional edits

are involved. For this reason a second algorithm based on a mixed-integer for-

mulation of the problem has been implemented as well. This algorithm avoids

explicit variable elimination and value substitution and will be reported upon

in a separate paper (De Jonge and Van der Loo, 2012).

5 Conclusions

We described new functionality of the editrules package, pertaining to condi-

tional restrictions and mixed data edits. All existing edit manipulation func-

tions have been extended (overloaded) to handle the new editset object and

several new edit manipulation features have been added. Most notably the

possibility to read edits from a free-form textfile and the option to split sets

of edits in disjunct sets that do not contain any mixed data edits anymore.

Also, the branch-and-bound error localization methods have been accelerated

by taking care of range edit violations prior to multivariate error localization.

19

Future work on the package may include the extension to soft edits, where not

only the violation of an edit is weighed in the process of error localization but

also the amount of violation can be taken into account during error localization.

20

References

Csardi, G. and T. Nepusz (2006). The igraph software package for complex

network research. InterJournal Complex Systems, 1695.

De Jonge, E. and M. Van der Loo (2011). Manipulation of linear edits and error

localization with the editrules package. Technical Report 201120, Statistics

Netherlands, The Hague.

De Jonge, E. and M. van der Loo (2012). editrules: R package for parsing and

manipulating of edit rules and error localization. R package version 2.5.

De Jonge, E. and M. Van der Loo (2012). Error localization as a mixed-integer

problem with the editrules package. Technical Report 2012XX, Statistics

Netherlands, The Hague. forthcoming.

De Waal, T. (2003). Processing of erroneous and unsafe data. Ph. D. thesis,

Erasmus University Rotterdam.

De Waal, T., J. Pannekoek, and S. Scholtus (2011). Handbook of statistical

data editing and imputation. Wiley handbooks in survey methodology. John

Wiley & Sons.

De Waal, T. and R. Quere (2003). A fast and simple algorithm for automatic

editing of mixed data. Journal of Official Statistics 19, 383–402.

Fellegi, I. P. and D. Holt (1976). A systematic approach to automatic edit and

imputation. Journal of the Americal Statistical Association 71, 17–35.

Van der Loo, M. and E. De Jonge (2011a). Deductive imputation with the

deducorrect package. Technical Report 201126, Statistics Netherlands.

Van der Loo, M. and E. De Jonge (2011b). Manipulation of categorical data

edits and error localization with the editrules package. Technical Report

201129, Statistics Netherlands.

Van der Loo, M. and E. de Jonge (2012). Algorithms of the editrules package.

Technical report, Statistics Netherlands. Forthcoming.

21

	Manipulation of conditional restrictions and error localization with the editrules package
	Contents
	1 Introduction
	2 Mixed data and conditional edits
	2.1 Reading and writing edits
	2.2 Edit checking, obvious redundancy and obvious infeasibility
	2.3 Visualizing and disentangling edits

	3 Manipulation of conditional edits
	3.1 Value substitution
	3.2 Variable elimination and satis�ability

	4 Error localization in mixed data
	4.1 Error localization with localizeErrors and errorLocalizer
	4.2 Some details on implementation

	5 Conclusions
	References

