An R-based data editing system

Mark van der Loo

R at Statistics Netherlands

- Strategic tool since 2010
 - Internal wiki, knowledge center, course.
- Used at:
 - National Accounts
 - Tourist statistics
 - Data collection with web robots (part of CPI)
 - Computing HSMR
 - Derivation of households
 - Etc. etc. etc.
- Used for:
 - (Complex) data manipulation
 - Analyses and regression
 - Visualisation
 - Data editing

Packages developed, at CRAN

- Data editing
 - editrules
 - deducorrect
 - rspa
- Data Visualisation
 - treemap
 - tabplot, tabplotd3
- Large data files
 - LaF (Large ASCII files)

Data editing packages

- editrules
 - Define rules
 - Verify data against them
 - Localize errors
- deducorrect
 - Deductive correction
 - Deductive imputation
 - Apply 'direct rules'
- rspa
 - Adjust numerical records to satisfy rules

```
> E <- editfile('myrules.txt')
> ve <- violatedEdits(E,dat)
> el <- localizeErrors(E,dat)
>
```

```
> E <- editfile('myrules.txt')
> ct <- correctTypos(E,dat)
> cr <- correctRounding(E,dat)
>
```

```
> E <- editfile('myrules.txt')
> ad <- adjustRecords(E,dat)
>
```


Automated data editing system for Child Care Centre Statistics

Automated editing

Example code: solve typing errors

```
oplossenTikfouten <- function(E, dat, db, id){</pre>
   d <- correctTypos(E,dat)</pre>
   cors <- d$corrections</pre>
   opslaanLogRecords(db,
                = dat[cors$row,id],
      variabele = cors$variable,
      oud = cors$old,
      nieuw = cors$new,
      methode = "tikfout"
   d$corrected
```

Results and process flow I: Cells

Cells								
	Available	Missing						
Still available								
Available unadapted	Available adapted	Imputed	Made missing	Still missing				

Results and process flow I: Cells

Results and process flow II: Aggregates

Results and process flow III: violations

Nr of checks: #Rules X #Records								
	Verif	Not verifiable						
Violated				Satisfied				
Still violated	Extra violated	Still satisfied	Extra satisfied	Still not verifiable	Extra not verifiable			

Results and process flow III: violations

Results and process flow IV: measure of violation

An edit rule *e* can be understood as a 3-valued function of a record *x*:

$$e(\mathbf{x}) = \begin{cases} 1 & \text{if } x \text{ satifies } e \\ 0 & \text{if } x \text{ violates } e \end{cases}$$

$$NA & \text{if } e(\mathbf{x}) \text{ cannot be determined}$$

Tolerance: how much do I need to change x so e(x)=1?

Results and process flow IV: measure of violation (single rule)

An edit rule *e* can be understood as a 3-valued function of a record *x*:

$$e(\mathbf{x}) = \begin{cases} 1 & \text{if } x \text{ satifies } e \\ 0 & \text{if } x \text{ violates } e \end{cases}$$

$$NA & \text{if } e(\mathbf{x}) \text{ cannot be determined}$$

Tolerance: how much do I need to change x so e(x)=1?

Euclidean distance

numeric linear

Results and process flow IV: measure of violation (single rule)

Positive tolerances per rule

Height of box ~ square root of nr of violations

Left axis denotes nr of unevaluated rules.

Results and process flow IV: measure of violation (multiple rules)

Given a set of rules e_1, e_2, \dots, e_n that a record \boldsymbol{x} must obey.

How much do I need to change \mathbf{x} , so that all $e_i(\mathbf{x}) = 1$?

Results and process flow IV: measure of violation (multiple rules)

Given a set of rules e_1, e_2, \dots, e_n that a record \boldsymbol{x} must obey.

How much do I need to change \mathbf{x} , so that all $e_i(\mathbf{x}) = 1$?

Euclidean distance

This can be computed with the rspa package.

Results and process flow IV: measure of violation (multiple rules)

Euclidean distance between actual and closest valid record.

A line traces one record.

Conclusions and outlook

- R-based, easy to build production-grade data editing system.
- Logging and indicators offer insight into
 - Quality of automated cleaning
 - Quality of data
- Future plans:
 - System is now being configured for another statistic
 - Implement general indicators (validator package)
 - Separate logging stream from data stream
- Reference
 - E. de Jonge and M. van der Loo *An introduction to data cleaning with R* (SN discussion paper nr 201313)

