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I. INTRODUCTION

1. It is widely known that statistical data editing (data cleaning) is an essential step in the
production of accurate and reliable official statistics. Indeed, the impact on estimated values of data
editing and imputation procedures has often been demonstrated. Whitridge and Bernier (2006) for
example, show that imputation of missing values can have a significant effect on estimated totals of
economic variables and van der Loo and Pannekoek (2014) show that estimated means and naively
estimated variances may vary significantly over a multi-step data editing process. Dasu and Loh (2012)
propose metrics to evaluate the impact of data cleaning based on distributional properties pre- and
post data cleaning in the context of very large databases.

2. Besides the changes of estimated means, variances, and other distributional parameters in
edited data, the precision of these estimates is influenced by data cleaning as well. The specific case of
variance caused by imputation has received considerable attention over the last decades. The methods
based on multiple imputation and Bayesian bootstrapping by Rubin (1987, 1996) and the resampling
based methods of Rao and Shao (1992); Rao (1996), and Shao and Sitter (1996) Shao and Wang (2002,
2008) are amongst the most well-known. However, a statistical data editing process usually consists
of a sequence of steps where estimation of missing values is just one of the steps performed. Other
steps, such as outlier detection, rule-based corrections, or error localization may well contain stochastic
sub-steps or parameter estimations based on observed data that influence the variance of estimation.

3. In this paper, the variance caused by data cleaning is therefore studied from a general point
of view, abstracting from the specific type of data cleaning step performed. Here, the process of data
editing is considered to be a part of the estimator. Consequently the estimator includes the stochastic
editing steps that contribute to the variance. It is our purpose to estimate the total variance of this
estimator. In the next section we classify variance-contributing editing steps and formally decompose
the variance into a sampling and a data-editing related term. In Section III we propose a simple
bootstrap estimator for the variance. The procedure is applied to a data editing process on SBS data
in a numerical experiment that is described in Section IV. We discuss conclusions and ways to improve
the method further in Section V.
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II. EDIT STEPS AND SOURCES OF VARIANCE

1. We consider a finite population from which a survey sample is drawn with the purpose of esti-
mating some specified population parameters. In official statistics these parameters are usually simple
functions of the population data, most often (group) means, totals, or percentages. The estimator of
such a parameter is a function of the survey dataset. When all variables are measured without errors
and the data are complete (no missing values), the estimator is usually a simple explicit function of
the data, often a weighted mean or total. In some cases explicit estimators for the sampling variance
of the estimator can be derived. The standard example is the estimator of the mean µ under simple
random sampling without replacement. The estimator µ̂ equals the sample mean x̄ of variable X and
the estimated sampling variance of µ̂ is given by the well-known expression

1

n

(
1− n

N

) 1

n− 1

n∑
j=1

(xj − x̄)2, (1)

where N is the size of the population and n the size of the survey sample. The form of this variance
estimator depends explicitly on the definition of the estimator for µ and the sample design. It must
therefore be determined anew for any combination of estimator and design.

2. In practice, survey data sets often suffer from missing values, outliers, and erroneous values.
Applying a simple estimator (sum, mean) to the raw dataset is therefore out of the question. In stead,
an elaborate data editing process first transforms the raw data set into a completed and consistent
data set and only then are the estimates computed. This means that the whole data editing process
is in principle part of the formulation of the estimator.

3. For variance estimation the current practice is to largely ignore this complication and to derive
variance estimators that treat the edited dataset as if it was the observed data. This approach is valid
only when the data editing procedure does not add to the sampling variance of an estimator—that
is, when it consists of simple deterministic transformations transforming raw data into complete and
consistent data. If this is not the case it is an approximation that should be validated.

A. Sources of variance

1. In most surveys for official statistics a number of data editing steps are performed that are not
of the simple deterministic kind and will in different ways influence the variance. We distinguish three
different types of edit steps according to their influence on estimator variance.
Case 1: Deterministic operations with fixed parameters

These are operations that can be specified by deterministic rules or algorithms which may be
parameterized by auxiliary data or control parameters that are not estimated from the data
set to be edited. The outcomes of these operations do therefore not depend on the composition
of a particular sample and don’t add to the variance of estimation. Examples of deterministic
editing operations include imputation with a historical value, deletion of incorrect minus-signs,
and correction of a unit-of-measure error when the turnover by employee ratio is 300 times that
of the previous year.

Case 2: Deterministic editing with estimated parameters.
These include edit operations depending on parameters that are estimated from the data set
to be edited. This not only includes many common imputation methods (parametric models,
hot deck) but also for example outlier detection using estimated cut-off values. A more subtle
but similar case is when the reliability weights for error localization depend on the dataset
to be edited. For example, one may derive them from the difference between observed and
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predicted values. Editing steps with estimated parameters create cross-record dependencies.
They therefore cause the estimator to vary depending on sample composition and contribute
to the overall sampling variance.

Case 3: Stochastic editing methods.
Some editing or imputation operations involve methods that create modified values in an explic-
itly random manner. Well-known examples include random hot deck and k nearest neighbour
imputation. However, error localization or certain roundoff correction methods can also include
randomization, for example to choose from a set of equivalent solutions. Since these methods
introduce new random processes they obviously contribute to the estimator variance.

The above cases do not classify data editing methods into mutually exclusive categories. Some methods
combine elements of Case 2 and 3, such as imputation models that augment predicted values with
randomized (normal) residuals.

B. Formal decomposition of estimation variance under data editing

1. Consider a general population parameter θ, estimated from a survey sample using a procedure
which we label θ̂. We assume that this estimator includes some kind of data editing process. If the
result of data editing depends on the realization of a stochastic variable δ, the variance of θ̂ can be
decomposed as follows (Eve’s law1):

V (θ̂) = EδV (θ̂|δ)︸ ︷︷ ︸
sampling
variance

+ VδE(θ̂|δ)︸ ︷︷ ︸
data editing

variance

. (2)

The first term is interpreted as the sampling variance. If δ is fixed the second term vanishes as well as
the expectation in the second term and we have V (θ̂) = V (θ̂|δ). The second term is interpreted as the
variance contribution added by data editing. Ignoring the effect of data editing on the variance of an
estimator is equivalent to assuming that VδE(θ̂|δ)� EδV (θ̂|δ).

2. As an example consider the outlier detection example of Case 2 mentioned above. Let us
assume that a value is deemend erroneous when it exceeds some limit α̂ which is computed from the
data set to be edited (e.g. the median plus 3/2 times the interquartile range). The value of θ̂ depends
on α̂ so

V (θ̂) = Eα̂V (θ̂|α̂) + Vα̂E(θ̂|α̂), (3)

where the second term can be interpreted as the ‘outlier detection variance’.

3. In a multi-step data editing procedure there may be multiple sources of randomness. In that
case the total variance can be formally expanded by iterated application of Eve’s law. As an example
consider the case where imputations are generated as a prediction from a statistical model augmented
with random disturbances. This is an example that mixes Case 2 and Case 3 mentioned earlier since
an imputation is determined as

M(x, β̂) + ε, where ε ∼ N (0, σ̂2).

Here, M(x, α) denotes the model prediction at a value of predictor x, α̂ its parameters and σ̂2 variance
of the model residuals. The parameters α̂ and σ̂ have an associated sampling variance while ε is drawn
from a distribution of which the parameters depend on the sample. The formal expansion of the
variance conditional on σ̂ can be written as

V (θ̂|σ̂) = Eβ̂V (θ̂|β̂, σ̂) + Vβ̂E(θ̂|β̂, σ̂).

1 This rule is sometimes called Eve’s law because of the way the symbols E and V occur in the equation.
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Inserting this expression into Eve’s law for V (θ̂) we get

V (θ̂) = Eσ̂Eβ̂V (θ̂|β̂, σ̂2)︸ ︷︷ ︸
sampling variance

+Eσ̂Vβ̂E(θ̂|β̂, σ̂2)︸ ︷︷ ︸
estimation variance

+Vσ̂E(θ̂|σ̂)︸ ︷︷ ︸
method
variance

. (4)

Again, the first term can be interpreted as the variance contribution caused by variation of the sample
composition. The second term describes the variance caused by the sampling variation of the estimated
parameters β̂. The third term describes the variance caused by the added random term ε. Note that
Vσ̂ depends on both the variation of σ̂ over the samples as well as on the variation of ε over the normal
distribution.

4. In general, the imputation or correction methods as well as the mechanisms causing randomness
are hard to analyze analytically. Deriving analytical expressions that estimate Equations such as (3)
or (4) therefore becomes quickly intractable in practice. A computational approach to total variance
estimation therefore becomes attractive.

III. A BOOTSTRAP ESTIMATOR OF THE TOTAL VARIANCE

1. As an alternative to deriving analytic expressions we propose to use a simple nonparametric
bootstrapping scheme to evaluate the variance of an estimator that includes data editing. In this
procedure, the raw data is resampled (with replacement) B times and the full estimation procedure is
executed for each bootstrap sample. This then yields an ensemble of estimators {θ̂1, θ̂2, . . . , θ̂B} The
bootstrap estimate θ̂∗ of θ is then given by the ensemble average

θ̂∗ =
1

B

B∑
b=1

θ̂b.

An estimate of the total variance V (θ̂∗) is given by the bootstrap estimator

V̂ ∗(θ̂∗) =
1

B

B∑
b=1

(θ̂b − θ̂∗)2.

Since the complete estimation procedure is executed for each bootstrap sample this estimator includes
both terms on the right hand side of Equation (2), so

V̂ ∗(θ̂∗) = Ê∗δ V̂ (θ̂∗|δ) + V̂ ∗δ Ê(θ̂∗|δ).

2. Comparing the single estimate θ̂ with the bootstrap mean yields an estimate for the bias of θ̂:

ˆbias(θ̂) = θ̂ − θ̂∗. (5)

If we also have an estimator for the variance of θ̂ that ignores the data editing, say V̂ ′(θ̂) then we can
estimate the variance contributed by data editing as

V̂δ(θ̂) ≡ V̂δÊ(θ̂|δ) = V̂ ∗(θ̂∗)− V̂ ′(θ̂). (6)

Here, we introduced the short-hand notation V̂δ(θ̂) to represent the data editing variance.
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3. As an example, consider the estimation of the mean µ of a variable X. The estimator µ̂ is
given by x̄e: the sample mean after data editing. The naive estimator of variance (in the case of simple
random sampling with replacement) is then given by Equation (1)

V̂ ′(µ̂) =
1

n

(
1− n

N

) 1

n− 1

n∑
j=1

(xe,j − x̄e)2.

The bootstrap variance is given by

V̂ ∗(µ̂∗) =
1

B

B∑
b=1

(x̄e,b − µ̂∗)2, (7)

where µ̂∗ is the mean over the bootstrap ensemble x̄e,b, b = 1, 2, . . . , B (each bootstrap sample edited
individually). The amount of data editing variance ignored by the naive estimator is thus estimated
as

V̂δ(µ̂) = V̂ ∗(µ̂∗)− V̂ ′(µ̂).

4. For many parameter estimates, the naive variance estimator ignoring δ is readily available.
However, even in cases where variance estimators are not analytically known one can create a naive
variance estimator by resampling from the edited dataset, so

V̂ ′∗(θ̂) =
1

B

B∑
b=1

(θ̂′e,b − θ̂)2.

The prime on the notation θ̂′e,b indicates that the ensemble of estimates is created by resampling from
the data set that has been edited only once. The estimated data editing variance is now given by
V̂ ∗(θ)− V̂ ′∗(θ̂).

5. In practice the bootstrap procedure pointed out above may be simplified when a multi-step
data editing process starts with one or more Case 1 data editing operations (simple deterministic steps
that do not add to the variance). Such steps need not be part of the resampled estimation, so one
simply performs resampling on the data set resulting from these initial steps. Complications occur
when survey designs are more complex than simple random sampling without replacement. It is well
known that for more elaborate schemes such as clustered or stratified sampling, bootstrapping schemes
must be adapted accordingly. See Rao and Wu (1988); Rao (2006) for bootstrap approaches under
complex survey designs.

IV. APPLICATION

1. To test the bootstrap estimator, we performed a numerical experiment using 304 records from
the Structural Business Survey (SBS) on wholesalers. A set of 66 linear restrictions were imposed on
69 variables: 13 equality balance rules and 53 nonnegativity constraints. The raw dataset has about
38% of the cells missing and about one third of the records violated at least one rule (this is counting
only the cases where rules could be checked). Using the procedure outlined below, the data set can be
made complete and consistent with the restrictions in a fully automated way.

A. Data editing procedure

1. Figure 1 gives an overview of the automated data editing procedure applied in our numerical
experiment. The first two steps consists of a deterministic method for removing unit of measure errors
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(caused by reporting in unit currency rather than thousands of currency), followed by a deterministic
method for finding and correcting typing errors in numerical data under linear constraints. These
methods are fully deterministic and have no components that vary across sample compositions. They
therefore do not add to the data editing variance and are left out of the bootstrap procedure.

2. The procedure for correcting rounding errors is based on the scapegoat algorithm of Scholtus
(2011). This algorithm corrects violations of linear (in)equality restrictions on the order of a rounding
error (e.g. 2 units of measurement) by randomly assigning a variable to adapt (it takes account of the
restrictions in choosing what variables may be adapted). It therefore adds to the data editing variance
through an intrinsic stochastic element.

3. The Error localization step is based on the generalized principle of Fellegi and Holt (1976).
This means that for each record a set of variables is selected that minimizes a sum of reliability weights
under the restriction that they can be imputed consistent with the edit rules. For each record, initial
weights w′j (j = 1, 2, . . . , n = 67) were computed as

w′j = min

{
xj

median(Xj)
,
median(xj)

Xj

}
.

These weights are lower (indicating a lower reliability) when a value deviates further from the vari-
able median. Since the median varies over samples, this introduces sampling variance to the error
localization procedure. The weights were subsequently scaled so

wj = 1 +
w′j −minj{w′j}

maxj{w′j} −minj{w′j}
× 1

n
.

This scaling ensures that the feasible solution of least weight is amongst the feasible solutions that
point out the least number of variables necessary for error correction. See van der Loo (2015) for a
proof.

4. Once erroneous fields have been deleted, it is possible that the restrictions allow a unique value
for one or more of the variables. If this is the case, such values are derived in a process called deductive
imputation. Methods for deductive imputation under linear (in)equality constraints are described by
de Waal et al. (2011, Chapter 9). These methods are fully deterministic and do not add to the data
editing variance.

5. Next, fields that are left empty are imputed using ratio imputation where the ‘total number of
staff’ was used as predicting variable in all cases. For cases where the predictor is missing, the overall
median is imputed. The computation of the estimated ratios and medians clearly contributes to the
sampling variance. The rations explain a varying amount of variance in the imputed variables. The
explained variance varies from near zero (e.g. for amounts invested) to more than 80-90% (specific
staff numbers, staff costs). For this work we focused on a number of overall financial variables (See
III). The variance explained by staff number in these variables is about 20-25%, except for the total
operating expenses for which it is about 10%.

6. In the final step, the values that were imputed using a model-based approach are adjusted such
that each record satisfies the set of restrictions. The adjustment method is based on the successive
projection algorithm described by Pannekoek and Zhang (2015). This method projects an inconsistent
record onto the convex polytope described by the set of linear inequality restrictions by adjusting
only the imputed values. This method is deterministic and in itself does not add to the data editing
(sampling) variance.
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In bootstrap

Figure 1. Overview of the data editing process.

B. Bootstrap procedure

1. A non-parametric bootstrap was used to replicate the relevant parts of the data editing pro-
cedure B = 800 times (outlined in Figure 1). For the current experiment we focused on six variables:
‘total net turnover’, ‘other income’, ‘total income’, ‘operational expenses’, ‘operational income’ and
‘tax result’. These are the main variables in the overall account balance for an establishment.

2. The numerical experiment was executed using the R environment for statistical computing (R
Development Core Team, 2011). The R packages validate, errorlocate, deductive, simputation,
and rspa were used to perform rule management, error localisation, deductive correction, imputation
and adjustment. (van der Loo and de Jonge, 2016, 2017; de Jonge and van der Loo, 2016; van der Loo,
2015, 2017).

3. For the interpretation of bootstrap bias (Equation ) or the data editing variance, it is important
to understand to what extent the bootstrapping procedure has converged. Figure 2 shows how the
bootstrap means of the main variables converge as a function of the size of the bootstrap ensemble.
We find that after about 600 bootstrap samples all means have converged to within 1% of their final
value. In figure 3 the convergence of the standard deviations is shown. The plot was generated by
bootstrapping from the edited original dataset and so does not include the data editing. From this
test we find that it takes about 12500 bootstrap samples before all standard deviations have converged
to within 1% of their final value. At B = 800, the number of resamples used in this work, the
standard deviations have converged to within about 3%-4% of their final values. These means that
from the current numerical experiment, a bias of less than 1% and an observed data editing variance
of less than 4% can be a consequence of non-convergence and should as such not be interpreted as
significant. Finally, it is important to observe that may both over- or underestimate parameters before
a satisfactory convergence level is reached.

C. Results

1. Table 1 presents the main results of our bootstrap experiment. To make comparison with the
means easier, Table 1 reports the square roots of the bootstrap variance estimation σ̂(µ̂∗) = V̂ ∗(µ̂∗)

1/2
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Figure 2. Convergence of the bootstrap means as a function of the number of boot-
strap samples. Convergence is computed as the bootstrap mean at the number of
bootstraps samples on the x-axis, relative to the final estimate at B = 800.
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Figure 3. Convergence of the bootstrap standard deviations as a function of the num-
ber of bootstrap samples. Bootstrapping was perfomed on the original dataset after
editing.

and similar for the naive variance V̂ ′(µ̂). The final column represents the percentage of variance added
by data editing. This is computed as [V̂ ∗(µ̂∗) − V̂ ′(µ̂)]/V̂ ∗(µ̂∗) × 100, where the variance terms were
defined in Equations (6) and (7).

2. For the main variables: ‘net turnover’, ‘total income’ and ‘total operating expenses’, the boot-
strap estimated bias is less then a tenth of a percent. This does not exceed the fluctuations we would
still expected at repeated experiments B = 800 bootstrapping experiments so we do not consider
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Table 1. Bootstrap mean µ̂∗, standard mean µ̂, bootstrap estimated bias, bootstrap
standard deviation σ̂∗(µ̂∗) , naive standard deviation σ̂′(µ̂) and percentage bootstrap
variance for six SBS variables. Percentages in italics are considered insignificant when
compared to the state of convergence after B = 800 bootstrap samples.

Variable µ̂∗ µ̂ ˆbias(µ̂) ˆbias(µ̂)(%) σ̂∗(µ̂∗) σ̂′(µ) V̂δ(µ̂) (%)
net turnover 27181.0 27171.0 9.7 0.03 2371.5 2364.3 0.6
other income 130.8 127.1 3.7 2.83 75.1 75.4 -0.7
total income 27328.0 27314.0 14.0 0.05 2388.8 2378.1 0.9
opr expenses 21938.0 21958.0 -19.8 -0.09 2058.4 2096.7 -3.8
opr income 758.4 745.8 12.6 1.66 144.7 134.2 13.9
taxresult 725.8 708.7 17.1 2.35 176.2 162.5 14.9

this bias significant. For ‘other income’, ‘operational expenses’ and ‘operational income’ we do find
a significant bootstrap bias of 2.83, 1.66 adnd 2.35% respectively. These variables are sub-items on
the balance sheet and havein the raw data a higher percentage of missings. Compared to the other
variables, ‘other income’ is the variable with the largest relative effect of editing on the mean (-19%
compared to the raw data) the largest percentage of missings in the raw data (8.6% with the others
less than 3%). It is also the only variable with a mixed distribution: about 50% of the ’other turnover’
values are reported zero.

3. Regarding the data editing variance, we find that the variables ‘operating income’ and ‘tax
result’ gain a detectable amount of data editing variance: respectively 13.9% and 14.9%. Percentages
found with the other variables do not exceed the amount of fluctuation in variance if we were to repeat
the B = 800 bootstrap experiment. Inspection of the data shows that of the six studied variables,
these variables had the highest number of model-based (ratio or median) imputations. This is likely
to explain the extra variance, especially given how crude the imputation methods in our experiment
are.

V. CONCLUSION

1. We argue that besides the well-known imputation variance, other data editing steps can con-
tribute to the overall variance of a population estimate based on a survey sample. The contribution
of data editing variance can be studied by decomposing the total variance into components that are
conditional on either sample composition or randomisation during an edit step. Analytical expressions
for such (iterated) decompositions are hard to obtain but the total variance may be estimated using a
bootstrap estimator. In this work we have applied a simple nonparametric bootstrap to estimate the
total variance of a simple but realistic automated data editing procedure. By comparing this variance
with a naive variance estimator that does not take data editing into account, an estimate of total data
editing variance is derived for the first time.

2. In the current method we have made some simplifying assumptions which could be improved
upon. In particular, we expect further improvements by taking better into account the sampling scheme
applied to obtain the original data, and by using bootstrap methodology that is suited for samples
that form a significant fraction of the population.
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