
Data Validation

Data Validation
Mark P.J. van der Loo and Edwin de Jonge

Keywords: data quality, data cleaning

Abstract: Data validation is the activity where one decides whether or not a particular data
set is fit for a given purpose. Formalizing the requirements that drive this decision process
allows for unambiguous communication of the requirements, automation of the decision
process, and opens up ways to maintain and investigate the decision process itself. The
purpose of this article is to formalize the definition of data validation and to demonstrate
some of the properties that can be derived from this definition. In particular, it is shown
how a formal view of the concept permits a classification of data quality requirements,
allowing them to be ordered in increasing levels of complexity. Some subtleties arising
from combining possibly many such requirements are pointed out as well.

Informally, data validation is the activity where one decides whether or not a particular data set is fit for a
given purpose. The decision is based on testing observed data against prior expectations that a plausible
data set is assumed to satisfy. Examples of prior expectations range widely. They include natural limits on
variables (weight cannot be negative), restrictions on combinations of multiple variables (a man cannot be
pregnant), combinations of multiple entities (a mother cannot be younger than her child), and combina-
tions of multiple data sources (import value of country A from country B must equal the export value of
country B to country A). Besides the strict logical constraints mentioned in the examples, there are often
softer constraints based on human experience. For example, one may not expect a certain economic sec-
tor to grow more than 5% in a quarter. Here, the 5% limit does not represent a physical impossibility but
rather a limit based on past experience. Since one must decide in the end whether a data set is usable for
its intended purpose, we treat such assessments on equal footing.

The purpose of this article is to formalize the definition of data validation and to demonstrate some
of the properties that can be derived from this definition. In particular, it is shown how a formal view
of the concept permits a classification of data validation rules (assertions), allowing them to be ordered
in increasing levels of “complexity.” Here, the term “complexity” refers to the amount of different types
of information necessary to evaluate a validation rule. A formal definition also permits development of
tools for automated validation and automated reasoning about data validation[1–3]. Finally, some subtleties
arising from combining validation rules are pointed out.

Statistics Netherlands, The Hague, The Netherlands

Wiley StatsRef: Statistics Reference Online, © 2014–2020 John Wiley & Sons, Ltd
This article is © 2020 John Wiley & Sons, Ltd.
DOI: 10.1002/9781118445112.stat08255

1



Data Validation

1 Formal Definition of Data Validation

Intuitively, a validation activity classifies a data set as acceptable or not acceptable. A straightforward for-
malization is to define it as a function from the collection of data sets that could have been observed to
{True, False}. One only needs to be careful in defining the “collection of data sets,” to avoid a “set of all sets”
which recursively holds itself. To avoid such paradoxes, a data set is defined as a set of key–value pairs,
where the keys come from a finite set, and the values from some domain.

Definition 1. A data point is a pair (k, x) ∈ K × D, where k is a key, selected from a finite set K, and x is a
value from a domain D.

In applications, the identifier k makes the value interpretable as the property of a real-world entity or
event. The domain D is the set of all possible values that x can take, and it therefore depends on the cir-
cumstances in which the data is obtained.

As an example, consider an administrative system holding age and job status of persons. It is assumed
that “job” takes values in {"employed","unemployed"} and that “age” is an integer. However, if the
data entry system performs no validation on entered data, numbers may end up in the job field, and job
values may end up in the age field. In an example where the database contains data on two persons identified
as 1 and 2, this gives

K = {1, 2} × {"age","job"}
D = ℕ ∪ {"employed","unemployed"} (1)

This definition allows for the occurrence of missing values by defining a special value for them, say “NA”
(not available) and adding it to the domain.

Once K and D are fixed, it is possible to define the set of all observable data sets.

Definition 2. A data set is a subset of K × D where every key in K occurs exactly once.

Another way to interpret this is to say that a data set is a total function K → D. The set of all observable
data sets is denoted DK . In the example, one possible data set is

{((1,"age"), 25), ((1,"job"),"unemployed"),
((2,"age"),"employed"), ((2,"job"), 42)}

Observe that the key consists of a person identifier and a variable identifier. Since type checking is a com-
mon part of data validation, these definitions deliberately leave open the possibility that variables assume
a value of the wrong type.

Data validation can now be formally defined as follows.

Definition 3. A data validation function is a surjective function

v ∶ DK ↠ {False, True}

A data set d ∈ DK for which v(d) = True is said to satisfy v. A data set for which v(d) = False is said to
fail v.

Recall that surjective means that there is at least one d ∈ DK for which v(d) = False and at least one
d ∈ DK for which v(d) = True. A validation function has to be surjective to have any meaning as a data
validation activity. Suppose that v′ ∶ DK → {False, True} is a nonsurjective function. If there is no data set

Wiley StatsRef: Statistics Reference Online, © 2014–2020 John Wiley & Sons, Ltd
This article is © 2020 John Wiley & Sons, Ltd.
DOI: 10.1002/9781118445112.stat08255

2



Data Validation

d for which v′(d) = False, then v′ is always true and it does not validate anything. If, on the other hand, there
is no d for which v′(d) = True, then no data set can satisfy v′. In short, a function that is not surjective on
{False, True} does not separate valid from invalid data.

A data validation function is reminiscent of a predicate as defined in first-order logic. Informally, a
predicate is a statement about variables that can be True or False. The variables can take values in a pre-
defined set (referred to as the domain of the predicate). Since validation functions map elements of DK to
{False, True}, it is tempting to equate a validation function as a predicate over DK . However, the elements
of DK are instances of possible data sets, and validation is based on statements involving variables of a
single observed data set. It is therefore more convenient to adopt the following definition.

Definition 4. A validation rule is a predicate over an instance d ∈ DK that is neither a tautology nor a
contradiction.

The elements of DK are sufficiently similar so that any validation rule over a particular data set d ∈ DK is
also a validation rule over another data set in d′ ∈ DK , where the truth value of a validation rule depends
on the chosen data set. This also allows us to interpret a tautology as a predicate that is True for every
element of DK and a contradiction as a predicate that is False for every element of DK .

The equivalence between an assertion about a data set and a function classifying possible data sets as
valid or invalid instances is a rather obvious conclusion. The actual value of the above exercise is the strict
definition of a data point as a key–value pair. As will be shown below, inclusion of the key permits a useful
classification of data validation rules.

To demonstrate that many types of validation rules can be expressed in this framework, a few examples
based on the example of Equation (1) will be considered. The following rule states that all ages must be
integer:

∀((u,"age"), x) ∈ d ∶ x ∈ ℕ

Here, ((u,"age"), x) runs over the person–value pairs where the value is supposed to represent an age.
Similarly, it is possible to express a nonnegativity check on the age variable

∀((u,"age"), x) ∈ d ∶ x ≥ 0

In these examples a data set fails a validation rule when not all elements satisfy a predicate. Such rules are
not very informative when it comes to pinpointing what elements of the data set cause the violation. It is
customary to perform data validation on a finer level, for example, by checking nonnegativity element by
element. Based on the definitions introduced here, this is done by fixing the key completely

∀((1,"age"), x) ∈ d ∶ x ≥ 0
∀((2,"age"), x) ∈ d ∶ x ≥ 0

Now consider the cross-variable check that states that employed persons must be 15 or older

∀((u,"age"), x), (u,"job"), y) ∈ d ∶ y = "employed" ⇒ x ≥ 15

where⇒ denotes logical implication (if y = "employed", then x ≥ 15). Finally, consider the cross-person
check that states that we expect the average age in the data set to be larger than or equal to 5

∑

(u,"age",x)∈d
x

∑

(u,X,x)∈d
𝛿(X,"age")

≥ 5

where 𝛿(X,Y ) = 1 when X = Y and otherwise 0.

Wiley StatsRef: Statistics Reference Online, © 2014–2020 John Wiley & Sons, Ltd
This article is © 2020 John Wiley & Sons, Ltd.
DOI: 10.1002/9781118445112.stat08255

3



Data Validation

In practical applications, validation rules are often expressed more directly in terms of variable names,
such as age ≥ 0. Such expressions are specializations where one silently assumes extra properties such as
that the rule will be evaluated for the entry for age in every record.

Remark 1. In Definition 3 (and also 4), a validation function is defined as a surjection DK ↠ {False, True}.
In practical applications, it is often useful to also allow the value NA (not available) for cases where one or
more of the data points necessary for evaluating the validation rule are missing. In that case, the domain D
in the Equation (1) must be extended to D ∪ {NA}. See Van der Loo and De Jonge[3] for an implementation.

Remark 2. The formal definition of data validation rules also allows a formalization of data validation
software tools or domain-specific languages, such as in Van der Loo and De Jonge[3].

Remark 3. In official (government) statistics, validation rules are referred to as edit rules rather than data
validation rules. See De Waal et al.[4] and references therein.

2 Classification of Validation Rules

Validation rules defined by domain experts may be easy for humans to interpret but can be complex to
implement. Take as an example the assertion “the average price of a certain type of goods this year should
not differ more than 10% from last year’s average.” To evaluate this assertion, one needs to combine prices
of multiple goods collected over two time periods. A practical question is therefore if the “complexity of
evaluation,” in terms of the amount of information necessary, can somehow be measured. In this section,
a classification of data validation rules is derived that naturally leads to an ordering of validation rules in
terms of the variety of information that is necessary for their evaluation.

One way to measure the amount of information is to look at the predicate defining a data validation
rule and to determine how many different (k, x) pairs are needed to evaluate it. This is not very useful for
comparing complexity across different data sets that are not from the same DK since the numbers will
depend on the size of the key set K . One measure that does generalize to different DK is the measure “does
a rule need one or several (k, x) to be evaluated?.”

This measure is not very precise, but it can be refined when a key consists of multiple meaningful parts
such as in the running example where the key consists of the id of a person and the name of a variable.
One can then classify a rule according to two questions: “are multiple person ids necessary for evaluation?”
and “are multiple variables necessary for evaluation?.” This gives a four-way classification: one where both
questions are answered with “no,” two where one of the questions is answered with “yes,” and one where
both questions are answered with “yes.” Although this refinement improves the accuracy of the classifi-
cation, it only allows for comparing validation rules over data sets with the exact same key structure. It
would therefore be useful to have a generic key structure that can be reused in many situations. One such
structure can be found by considering in great generality how a data point is obtained in practice.

A data point usually represents the value of an attribute of an object or event in the real world: a person,
a website, an e-mail, a radio broadcast, a country, a sensor, a company, or anything else that has observable
attributes. In what follows, an object or event is referred to as a “unit” for brevity. A data point is created
by observing an attribute X from a unit u of a certain type U at time 𝜏 , as in Figure 1. Using the same
reasoning as above, this yields a 24 = 16-way classification of validation rules: for each element U , 𝜏 , u,
and X, a validation rule requires a single or multiple instances to be evaluated. However, there are some
restrictions. Any unit u can only be of one type. So, evaluating a validation rule will never require multiple
types and a single unit. Second, the type of a unit fixes its properties. So, a validation rule will never need
a single variable for multiple types. With these restrictions considered, the number of possible classes of
validation rules reduces from 16 to 10.

Wiley StatsRef: Statistics Reference Online, © 2014–2020 John Wiley & Sons, Ltd
This article is © 2020 John Wiley & Sons, Ltd.
DOI: 10.1002/9781118445112.stat08255

4



Data Validation

t

x

tu t ′u

Figure 1. A unit u of type U exists from tu to t′u. From tu onward it has an attribute X with its value x
possibly changing over time. At some time 𝜏 this value is observed. The observed value is thus fully char-
acterized by the quartet (U, 𝜏 , u, X).

Table 1. The 10 possible classes of validation rules, grouped into “validation levels.”

Validation level

0 1 2 3 4

ssss sssm ssmm smmm mmmm
ssms smsm msmm
smss smms

A higher level indicates that a wider variety of information is necessary to evaluate a validation rule.

To distinguish the classes, the following notation is introduced. For each element U , 𝜏 , u, and X, assign
an s when a validation rule pertains to a single value of that element and assign an m when a validation
rule pertains to multiple values of that element. For example, a validation rule of class sssm needs a single
type, a single measurement, a single object, and multiple variables to be evaluated.

The 10 possible classes can themselves be grouped into validation levels, according to whether a class is
labeled with no, one, two, three, or four ms. A higher validation level indicates that we need a larger variety
of information in order to evaluate the rule. The classification, and their grouping into validation levels, is
summarized in Table 1.

Going from level 0 to 4 corresponds to a workflow that is common in practice. One starts with simple
tests such as range checks. These are of level zero since a range check can be performed on a single data
point. That is, one only needs a value that corresponds to a single type, measurement, unit, and variable.
Next, more involved checks are performed, for instance, involving multiple variables (sssm, e.g., the ratio
between two properties of the same unit must be in a given range), multiple units (ssms, e.g., the mean of
a variable over multiple units must be within a specified range), or multiple measurements (smss, e.g., the
current value of the property of a unit cannot differ too much from a past value of the same property of the
same unit). Going up in level, even more complex rules are found until rule evaluation involves multiple
variables of multiple units of multiple types measured at multiple instances (mmmm).

This classification also has an immediate interpretation for data stored in a database that is normalized
in the sense of Codd[5]. In such a database, records represent units, columns represent variables, and tables
represent types. The “time of measurement” is represented as a variable as well. The classification indicates
whether a rule implementation needs to access multiple records, columns, or tables.

3 Properties of Validation Rule Sets

Definition 4 implies that a validation rule is a predicate over a data set that is not a tautology nor a con-
tradiction. This means that combining two validation rules with ∧ or ∨ does not automatically yield a new

Wiley StatsRef: Statistics Reference Online, © 2014–2020 John Wiley & Sons, Ltd
This article is © 2020 John Wiley & Sons, Ltd.
DOI: 10.1002/9781118445112.stat08255

5



Data Validation

validation rule. Consider, for example, the rules x ≥ 0 and x ≤ 1 (using shorter notation for brevity). The
rule x ≥ 0 ∨ x ≤ 1 is a tautology. The rule x ≥ 0 ∧ x ≤ −1 is a contradiction. In fact, the only operation that
is guaranteed to transform a validation rule into another validation rule is negation.

The fact that validation rules are not closed under conjugation (∧) or disjunction (∨) has practical con-
sequences. After all, defining a set of validation rules amounts to conjugating them together into a single
rule since a data set is valid only when all validation rules are satisfied. A set of rules may be such that
their conjugation is a contradiction. Such a rule set is called infeasible. More subtle problems involve unin-
tended consequences, including partial infeasibility[6], and introduction of fixed values or range restric-
tions. Other problems involve the introduction of several types of redundancies[7, 8], which make rule sets
both harder to maintain and hamper solving problems such as error localization[9, 10]. In the following para-
graphs, some examples of unintended effects and redundancies are discussed. The examples shown here
are selected from a more extensive discussion in Van der Loo and De Jonge[2] (Chapter 8). For simplicity
of presentation the rules are expressed as simple clauses, neglecting the key–value pair representation.

Partial inconsistency is (often) an unintended consequence implied by a pair of rules. For example, the
rule set

gender = "male" ⇒ income > 2000
gender = "male" ⇒ income < 1000

is feasible, but it can only be satisfied when gender ≠ "male". Thus, the combination of rules (uninten-
tionally) excludes an otherwise valid gender category.

A simple redundancy is introduced when one rule defines a subset of valid values with respect to another
rule. For example, if x ≥ 0 and x ≥ 1, then x ≥ 0 is redundant with respect to x ≥ 1. More complex cases
arise in sets with multiple rules. A more subtle redundancy, called “nonrelaxing clause,” occurs in the
following situation:

x ≥ 0 ⇒ y ≥ 0
x ≥ 0

Here, the second rule implies that the condition in the first rule must always be true. Hence, the rule set
can be simplified to

y ≥ 0
x ≥ 0

Another subtle redundancy, called a “nonconstraining clause,” occurs in the following situation:

x > 0 ⇒ y > 0
x < 1 ⇒ y > 1

Now, letting x vary from −∞ to ∞, the rule set first implies that y > 1. As x becomes positive, the rule set
implies that y > 0 until x reaches ∞. In other words, the rule set implies that y must be positive regardless
of x and can therefore be replaced with

y > 0
x < 1 ⇒ y > 1

Methods for algorithmically removing such issues and simplifying rule sets have recently been discussed
by Daalmans[11] and have been implemented by De Jonge and Van der Loo[12]. In short, the methods are
based on formulating Mixed Integer Programming (MIP) problems and detecting their (non)convergence
after certain manipulations of the rule sets. General theory and methods for rule manipulation have also
been discussed by Chandru and Hooker[13] and Hooker[14] in the context of optimization.

Wiley StatsRef: Statistics Reference Online, © 2014–2020 John Wiley & Sons, Ltd
This article is © 2020 John Wiley & Sons, Ltd.
DOI: 10.1002/9781118445112.stat08255

6



Data Validation

4 Conclusion

Data validation can be formalized equivalently in terms of certain predicates over a data set or as a surjec-
tive Boolean function over a well-defined set of observable data sets. It is possible to define a very general
classification of validation rules, based on a generic decomposition of the metadata. Combining validation
rules into a set can lead to subtle and unintended consequences that can be solved in some cases with
algorithmic methods.

Related Articles

Survey Quality and Survey Ethics; Data Quality in Vital and Health Statistics; Query Management:
The Route to a Quality Database; Statistics in Data and Information Quality.

References

[1] Zio, M.D., Fursova, N., Gelsema, T. et al. (2015) Methodology for Data Validation. Technical Report Deliverable of Work
Package 2, ESSNet on validation.

[2] Van der Loo, M. and De Jonge, E. (2018) Statistical Data Cleaning with Applications in R, John Wiley & Sons, Inc, New York.
[3] Van der Loo, M. and De Jonge, E. (2019) Data validation infrastructure for R. J. Stat. Soft., https://arxiv.org/abs/1912.09759.
[4] De Waal, T., Pannekoek, J., and Scholtus, S. (2011) Handbook of Statistical Data Editing and Imputation. Wiley Handbooks

in Survey Methodology, John Wiley & Sons.
[5] Codd, E.F. (1970) A relational model of data for large shared data banks. Commun. ACM, 13 (6), 377–387.
[6] Bruni, R. and Bianchi, G. (2012) A formal procedure for finding contradictions into a set of rules. Appl. Math. Sci., 6 (126),

6253–6271.
[7] Dillig, I., Dillig, T., and Aiken, A. (2010) Small formulas for large programs: on-line constraint simplification in scalable

static analysis, in International Static Analysis Symposium, Springer, pp. 236–252.
[8] Paulraj, S. and Sumathi, P. (2010) A comparative study of redundant constraints identification methods in linear pro-

gramming problems. Math. Probl. Eng., DOI: 10.1155/2010/723402.
[9] Bruni, R. (2005) Error correction for massive datasets. Optim. Meth. Soft., 20 (2–3), 297–316.

[10] De Jonge, E. and Van der Loo, M. (2019a) Error Localization, John Wiley & Sons, Inc.
[11] Daalmans, J. (2018) Constraint simplification for data editing of numerical variables. J. Off. Stat., 34 (1), 27–39.
[12] De Jonge, E. and Van der Loo, M. (2019b) Validatetools: Checking and Simplifying Validation Rule Sets. R package version

0.4.6.
[13] Chandru, V. and Hooker, J. (1999) Optimization Methods for Logical Inference, Volume 34 of Wiley Series in Discrete Mathe-

matics and Optimization, John Wiley & Sons.
[14] Hooker, J. (2000). Logic-Based Methods for Optimization: Combining Optimization and Constraint Satisfaction, Volume 2 of

Wiley Series in Discrete Mathematics and Optimization, John Wiley & Sons.

Wiley StatsRef: Statistics Reference Online, © 2014–2020 John Wiley & Sons, Ltd
This article is © 2020 John Wiley & Sons, Ltd.
DOI: 10.1002/9781118445112.stat08255

7

https://arxiv.org/abs/1912.09759

