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Network data is of increasing interest for official statisticians. Publishing such data

introduces re-identification risks that differ from tabular data or microdata records,

since the network structure may yield revealing clues about the identity of a node. In

this work we develop a measure of node-anonymity that is based purely on the

network structure surrounding a node. We show that our definition has some

desirable properties and we evaluate this measure on a small scale-free network. We

point out some avenues for improving upon the current computational complexity of

the algorithms implementing the anonymity measure, and discuss the most important

avenues for future research.
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Note

This public technical report was published as an internal research report on 26 October

2020 at Statistics Netherlands by the author. The Master’s thesis of de Jong (2021) built

on this report, implementing amongst others a concept algorithm that improves the

perfomance of the implementation mentioned in this paper with factors up to 104. The

work was has also been presented at two conferences (de Jong et al., 2021a,b). We

publish this technical report so the original theoretical work can be referenced.

The author was unaware of existing literature on Network Anonymity, until after

completing the original report. Notably, the concept of ‘structural anonymity’ (which we

call topological anonymity) has been described in a technical report of Hay et al. (2007).

Zou et al. (2009) describes a strict type of anonymity (called 𝑘-automorphism

anonymity) which in one limit coincides with the definition developed here. An recent

overview of developments in this area is also given by Ji et al. (2016).

1 Introduction

In recent years, Statistics Netherlands has been researching the prospects of Complexity

Science (Newman, 2011), for official statistics, and of that of Network Science in

particular. Indeed, van der Laan and de Jonge (2017, 2019) have demonstrated that

when existing data is studied from the perspective of network science, interesting new

insights and statistical products may be developed.

At the same time, network researchers outside of Statistics Netherlands are highly

interested in working with networks derived from microdata owned by Statistics

Netherlands. Sharing network data, for example in the form of Scientific or even Public

use files raises the issue of Statistical Disclosure Control. Statistical offices, and Statistics

Netherlands in particular are prolific in protecting statistical units represented in tabular

or relational data against disclosure (Hundepool et al., 2012; Willenborg and De Waal,

2001). Network data fundamentally differs from these data types because its

information content is defined by the way nodes are connected by edges. Such a

topology (’connectedness’) is less relevant for relational or tabular data, although

network models do play a role in certain table-protection methods. This means that an

adversary that wishes to re-identify a node in a network has an extra tool at his disposal:

the network structure surrounding a node.

In Statistical Disclosure Control theory for relational microdata, the risk of disclosure is

based on the concept of anonymity. This is a quantitative measure that measures the

non-uniqueness of an individual in a population or data set, relative to its attributes. An

often-used measure of anonymity for relational data sets was defined formally by

Samarati and Sweeney (1998); Samarati (2001). This definition can be restated
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informally as ‘an individual represented by a record in a relational data set is said to be

𝑘-anonymous when there are 𝑘 − 1 individuals like it1)’.

In this paper we develop a mathematical definition of anonymity for nodes in a network,

demonstrate some of its properties, and present a few first computational results. We

will also outline the most important open questions, and directions for future research.

2 Scenario

In order to assess the risk of disclosure it is necessary to identify a scenario that defines

the information released by a statistical institute and the information that an adversary

may have at his disposal. Since the focus of this paper is on developing concepts and

theory, we shall focus on a minimal scenario that can serve as a baseline case.

For our scenario we shall assume that a statistical institute wishes to publish a network

with labeled nodes. For example, the nodes may represent persons or businesses, and

links may represent a family relation, or a supplier-client relationship. Nodes are labeled

with a property, say income or turnover. We shall be interested in how easy or difficult it

is for an adversary to re-identify a certain node by using externally gained knowledge

about the network structure surrounding that node.

For an example, suppose that the nodes are people living in the Netherlands, and that

the links are (undirected) parent-child relations. Suppose further that the adversary

wishes to (partially) re-identify a certain person in the network. Say, the king of the

Netherlands. Since it is public knowledge that he has three children, and one living

parent, our adversary can query the network for nodes that have a network

neighbourhood similar to the king’s:

K (1)

where we labeled the sought-after node with an identifying symbol for visual clarification

(but this is not the case in the full network). Now, if the network contains 𝑛 nodes then

without any further information, the probability of re-identifying the king (or any node,

for that matter) out of 𝑛 = 17million nodes equals 1/𝑛 ≈ 5.9 × 10−8. In 2017 there

were about 2 million parents with 3 children2). Suppose that half of them have a living

parent, this means that the number of candidate nodes decreases to about 1 Million,

increasing the disclosure risk to about 10−6: an increase of two orders of magnitude.

Continuing this example, we can imagine that our adversary uses extra information

about the king’s network surroundings, for example that he has a sibling who also has

1) Samarati’s original definition applies to whole data sets, and assigns to a data set the anonymity of the

least anonymous individual.
2) https://www.cbs.nl/en-gb/news/2017/19/one-in-a-hundred-mothers-have-more-than-five-children
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three children. Hence, the search can be narrowed down further using a more extensive

search pattern, thereby increasing the disclosure probability.

From this example, two elements emerge that define the risk of disclosure. On one hand

there is the disclosure probability, which is conditional on the information an adversary

has. On the other hand there is the likelihood that this information actually will be

obtained by an adversary. Indeed we may express the disclosure risk 𝑟 for a certain node

𝑣 in the network as

𝑟(𝑣, 𝐼) = 𝑝(𝑣|𝐼)𝑝(𝐼) (2)

where 𝑝(𝑣|𝐼) is the disclosure probability, given certain information 𝐼, and 𝑝(𝐼) the

probability that an adversary will have this information. Observe that in this formulation

one may always assume the worst case scenario by setting 𝑝(𝐼) = 1. Generalizing a little

bit, we see that whichever way 𝑝(𝑣|𝐼) is determined, it is desirable that when the

amount of information reflected by 𝐼 increases, 𝑝(𝑣|𝐼) should increase as well. We

would furthermore like 𝑝(𝑣|𝐼) = 1/𝑛 when the adversary has no information, except

that 𝑣 is one of the 𝑛 nodes in a network. For 𝑝(𝐼) on the other hand, one would expect

it to decrease when 𝐼 increases, as it would cost an adversary more effort to collect more

information.

The remainder of this paper is devoted to quantifying 𝑝(𝑣|𝐼). Regarding the information

𝐼, we will focus on network structure surrounding the node. Thus, we ignore node

properties such as the income in the previous example; leaving the integration of these

properties for future work.

Finally, we note that this work is in no means finished. This paper is aimed as a progress

report, showing our current knowledge and open questions. It is mainly aimed as a

reference for further research.

3 Anonymity

The disclosure probability of an individual in a relational data set is inversely related to

its anonymity: the number of individuals that share a set of attribute values. For

networks, we shall in a similar fashion quantify anonymity of a node 𝑣 as the number of

nodes that have the same surrounding network structure. One may choose the ‘amount’

of surroundings that are taken into account by considering only nodes that are no more

than 𝑗 steps removed from our original node 𝑣.

This allows us to define anonymity 𝑎 as a function 𝑎(𝑣, 𝑗) that assigns the ‘number of

equivalent nodes’ to a node 𝑣. In a way to be made precise in Section 3.2, two nodes are

‘equivalent’ when they have similar surroundings, and play the same role in their

respective surroundings. It will be shown that distance 𝑗 can be interpreted as an

amount of information 𝐼 as in Equation (2). In the sense that the disclosure probability

𝑝(𝑣|𝑗) = 𝑎(𝑣, 𝑗)−1 decreases as a function of 𝑗, and that 𝑝(𝑣|0) = 1/𝑛 (𝑛 the number

of nodes) as desired. Furthermore, when 𝑗 equals the diameter of the network, the

disclosure probability of a node is equal to the size of its orbit in the network. This is a

natural upper limit that is induced by the symmetries of the network.
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3.1 Notation and concepts

We introduce the technical notations and definitions used in this paper. The terms

network or graph refer to a graph that may or may not be connected, and may or may

not be directed. There may, or may not be multiple edges between each pair of nodes

and self-loops are not excluded. Graphs are denoted 𝐺,𝐻, or 𝐹, their node and edge sets

are denoted respectively 𝑉 and 𝐸, or 𝑉(𝐺) and 𝐸(𝐺) for disambiguation. Nodes are

denoted 𝑣,𝑤, or 𝑢, and an edge between 𝑢 and 𝑣 is denoted 𝑢𝑣. The degree of a node is

the number of edges it is connected to. The (proper) subgraph relation is denoted⊂ (⊆).

The distance between two nodes is denoted 𝑑(𝑣, 𝑤) and is defined as the length of the

shortest path between them (see e.g. Diestel (2000)). Additionally we assume

𝑑(𝑣, 𝑤) = ∞ if there is no path from 𝑣 to 𝑤. The components of a graph are subgraphs

that have no connections between them. The diameter diam(𝐺) of a graph is the largest

distance found between any two nodes of 𝐺. Finally, let𝑈 be a subset of 𝑉. The subgraph

induced by 𝑈 is defined by the node set 𝑈 and all edges in 𝐺 between the nodes in 𝑈.

The concepts of neighbourhood, isomorphism, and automorphism play an important role

throughout the paper, and are therefore introduced formally.

Definition 1. Let 𝐺 be a graph, 𝑣 one of its nodes and 𝑗 a non-negative integer or∞. The

𝑗th order neighbourhood 𝑁(𝑣, 𝑗) of a node 𝑣 is the subgraph of 𝐺 induced by all nodes

with distance 𝑑(𝑣, 𝑤) ≤ 𝑗.

In some literature this is referred to as the closed neighbourhood of 𝑣 because it includes

𝑣. Observe that for all nodes 𝑣 of 𝐺 we have 𝑁(𝑣, diam(𝐺)) = 𝐺, 𝑁(𝑣, 0) = ({𝑣}, {}),

and 𝑁(𝑣, 𝑗) ⊆ 𝑁(𝑣, 𝑗 + 1).

Definition 2. Given two graphs 𝐺 and 𝐻. An isomorphism is a bijection

𝜙 ∶ 𝑉(𝐺) ↦ 𝑉(𝐻) such that if 𝑣𝑤 ∈ 𝐸(𝐺) then 𝜙(𝑣)𝜙(𝑤) ∈ 𝐸(𝐻).

Two graphs 𝐺 and 𝐻 are called isomporhic, denoted 𝐺 ≃ 𝐻 when, there is at least one

isomorphism between them.

Intuitively, isomorphisms are maps between graphs that preserve structure. A graph

invariant is a property of a graph that does not change under isomorphisms. Examples

of graph invariants include the graph diameter, and the distance between any two

nodes. In particular, this leads to the observation that the image of a 𝑗th order

neighbourhood of a node 𝑣 is an isomorphic 𝑗th order neighbourhood of the image of 𝑣.

Observation 3. Given two isomorphic graphs 𝐺 and 𝐻, let 𝜙 ∶ 𝑉(𝐺) → 𝑉(𝐻) be an

isomorphism, and let 𝑗 be a nonnegative integer or∞. We have

𝐺 ⊇ 𝑁(𝑣, 𝑗) ≃ 𝑁(𝜙(𝑣), 𝑗) ⊆ 𝐻, (3)

for all nodes 𝑣 ∈ 𝑉(𝐺).

Proof. Since distances are a graph invariant, we have that if 𝑣′ is in 𝑁(𝑣, 𝑗), then 𝜙(𝑣′)

is in 𝑁(𝜙(𝑣), 𝑗). Furthermore, by definition of isomorphism we have that if

𝑢𝑤 ∈ 𝐸(𝑁(𝑣, 𝑗)) then 𝜙(𝑢)𝜙(𝑤) ∈ 𝐸(𝑁(𝜙(𝑣), 𝑗)).
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More generally, one sees that if 𝐺 ≃ 𝐻 and 𝐺′ ⊆ 𝐺, then the image 𝐻′ of 𝐺′ under an

isomorphism connecting 𝐺 and 𝐻 is isomorphic to 𝐺′. In other words, having a certain

subgraph is a graph invariant.

Definition 4. An automorphism is an isomorphism of a graph onto itself.

Automorphisms permute nodes in a graph without breaking links. They are traditionally

denoted with 𝜋. The set of automorphisms of a graph is denoted Aut(𝐺) and it has the

structure of a group under function composition3). The group of automorphisms

partitions the nodes into equivalence classes of nodes that are permuted into each other

under an automorphism of the graph. The group-theoretical term for the equivalence

class of a node induced in this way is called its orbit, and the technical definition can be

written as

Orbit(𝑣) = ⋃

𝜋∈Aut(𝐺)

{𝜋(𝑣)}. (4)

Example 5. Consider the following graph 𝐺.

1 2 3

4

5

6 7 8

We have diam(𝐺) = 6, and the automorphism group Aut(𝐺) consists of four node

permutations 𝑒, 𝑎, 𝑏, 𝑐 that can be written as follows (using Cauchy’s notation for

permutations).

𝑒 = (
1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8
), 𝑎 = (

1 2 3 4 5 6 7 8

8 7 6 4 5 3 2 1
)

𝑏 = (
1 2 3 4 5 6 7 8

1 2 3 5 4 6 7 8
), 𝑐 = (

1 2 3 4 5 6 7 8

8 7 6 5 4 3 2 1
)

The multiplication rules are given by 𝑎2 = 𝑏2 = 𝑐2 = 𝑒 and 𝑎𝑏 = 𝑏𝑎 = 𝑐 (incidently,

this shows that Aut(𝐺) is isomorphic to Klein’s four-group 𝑉4). We may interpret each

element of Aut(𝐺) as a function. For example 𝑒(6) = 6 and 𝑎(2) = 7. Using

Equation (4), we can compute the orbit of each element.

Orbit(1) = {𝑒(1)} ∪ {𝑎(1)} ∪ {𝑏(1)} ∪ {𝑐(1)} = {1, 8} = Orbit(8)

Orbit(2) = {𝑒(2)} ∪ {𝑎(2)} ∪ {𝑏(2)} ∪ {𝑐(2)} = {2, 7} = Orbit(7)

Orbit(3) = {𝑒(3)} ∪ {𝑎(3)} ∪ {𝑏(3)} ∪ {𝑐(3)} = {3, 6} = Orbit(6)

Orbit(4) = {𝑒(4)} ∪ {𝑎(4)} ∪ {𝑏(4)} ∪ {𝑐(4)} = {4, 5} = Orbit(5).

3) Thismeans that if𝜋 is an automorphism of𝐺, then so is its inverse𝜋−1; when𝜋 and𝜋′ are automorphism

of 𝐺, then so is 𝜋𝜋′ (applying 𝜋 after applying 𝜋′); there is a unique unit element 𝑒 of Aut(𝐺) such that

𝑒𝜋 = 𝜋𝑒 = 𝜋 for all 𝜋.
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3.2 Topological anonymity

Anonymity is a measure of non-uniqueness. To measure non-uniqueness we seek a way

to partition the nodes in a graph into classes of nodes that are in some sense equivalent.

One way to go about this, and this is the way we will do it here, is to find an appropriate

formal equivalence relation between nodes. This then immediately yields disjunct

equivalence classes. The size of an equivalence class is then a measure of anonymity.

We remind the reader of the formal definition of an equivalence relation.

Definition 6. Let 𝑆 be a set. Given 𝑠 and 𝑡 in 𝑆, we write 𝑠 ≃ 𝑡 (𝑠 is equivalent to 𝑡) when

– 𝑠 ≃ 𝑠 for all 𝑠 ∈ 𝑆;

– if 𝑠 ≃ 𝑡 then 𝑡 ≃ 𝑠 for all 𝑠, 𝑡 in 𝑆

– if 𝑠 ≃ 𝑡 and 𝑡 ≃ 𝑢 then 𝑠 ≃ 𝑢, for all 𝑠, 𝑡, 𝑢 in 𝑆.

We have already encountered one example of an equivalence relation. Namely, graph

isomorphism is an equivalence relation on the set of graphs. The three demands in this

definition are respectively called the reflexive, symmetric, and transitive properties of an

equivalence relation. Together, these properties ensure that 𝑆 can be partitioned into

disjunct subsets, where each subset consists of elements that are equivalent to each

other, but not to any member of another subset in the partition.

Hence, if we find a meaningful equivalence relation between nodes, we can measure the

size of equivalence classes and use that as a measure of anonymity. Let us begin by

defining the following relation between nodes.

Definition 7. Let 𝐺 be a graph, 𝑉 its node set and 𝑗 a nonnegative integer or∞. For a

pair of nodes 𝑣 and 𝑤 in 𝑉 we write 𝑣 ≃𝑗 𝑤 when

1. 𝑁(𝑣, 𝑗) ≃ 𝑁(𝑤, 𝑗); and

2. There is an isomorphism 𝜙 ∶ 𝑁(𝑣, 𝑗) ↦ 𝑁(𝑤, 𝑗) such that 𝜙(𝑣) = 𝑤.

If 𝑣 and 𝑤 are in ≃𝑗 we shall write 𝑣 ≃𝑗 𝑤.

It is not hard to demonstrate (See Appendix A.1) that ≃𝑗 is indeed an equivalence

relation, as desired. The interpretation of this relation is that 𝑣 is equivalent to 𝑤 (in

order 𝑗) when they have similar (isomorphic) neighbourhoods of order 𝑗 and when they

play the same role in their respective neighbourhoods.

Example 8. Consider the following graph (where 𝐺 is an arbitrary graph).

v

G

w

(5)

The nodes 𝑣 and 𝑤 have isomorphic second order neighbourhoods, so

𝑁(𝑤, 2) ≃ 𝑁(𝑣, 2). But there is no isomorphism 𝜙 ∶ 𝑁(𝑣, 2) → 𝑁(𝑤, 2) for which

𝜙(𝑣) = 𝑤 (note for example that 𝑣 and 𝑤 have different degrees). So although 𝑣 and 𝑤

have isomorphic second order closed neighbourhoods, they do not satisfy the ≃2

relation.
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We shall denote the subset of nodes equivalent to a particular node 𝑣 as [𝑣]𝑗,

specifically:

[𝑣]𝑗 = {𝑤 ∈ 𝑉 ∶ 𝑣 ≃𝑗 𝑤}. (6)

We are now ready to formally define topological anonymity.

Definition 9 (Topological anonymity). Let 𝐺 be a graph, 𝑣 one of its nodes, and 𝑗 a

nonnegative integer or∞. The 𝑗th order topological anonymity 𝑎(𝑣, 𝑗) of 𝑣 is defined as

the size of its equivalence class under the ≃𝑗 relation

𝑎(𝑣, 𝑗) = #[𝑣]𝑗.

We now like to check whether 𝑎(𝑣, 𝑗) can be interpreted as the inverse of the disclosure

probability 𝑝(𝑣|𝑗) (see Equation 2) where 𝑗 quantifies the amount of information 𝐼

obtained by an adversary. In particular we would like to know whether

𝑝(𝑣|𝑗 + 1) ≥ 𝑝(𝑣|𝑗), as desired. It turns out that this property follows immediately from

the following, more general Theorem.

Theorem 10. Let 𝐺 be a graph, 𝑉 its node set and 𝛿 = diam(𝐺) the graph diameter. For

any 𝑣 ∈ 𝑉 we have

Orbit(𝑣) = [𝑣]𝛿 ⊆ [𝑣]𝛿−1 ⊆ ⋯ ⊆ [𝑣]1 ⊆ [𝑣]0 = 𝑉.

The proof is given in Appendix A.2. The main argument for proving the inclusions

involves restricting an appropriate isomorphism 𝑁(𝑣, 𝑗 + 1) ↦ 𝑁(𝑤, 𝑗 + 1) to an

appropriate isomorphism 𝑁(𝑣, 𝑗) ↦ 𝑁(𝑤, 𝑗). This Theorem will be important when we

develop algorithms to compute equivalence classes. Here, we focus on the consequence

that 𝑎(𝑣, 𝑗) is monotonically decreasing as a function of 𝑗.

Corollary 11.

#Orbit(𝑣) = 𝑎(𝑣, 𝛿) ≤ 𝑎(𝑣, 𝛿 − 1) ≤ ⋯ ≤ 𝑎(𝑣, 1) ≤ 𝑎(𝑣, 0) = 𝑛.

Proof. This follows immediately from Definition 9 and Theorem 10.

Equation (2) can now be interpreted as

𝑟(𝑣, 𝑗) = 𝑝(𝑣|𝑗)𝑝(𝑗) =
𝑝(𝑗)

𝑎(𝑣, 𝑗)
, (7)

where 𝑝(𝑗) is the probability that an adversary knows the structure of the

neighbourhood of 𝑣 up to order 𝑗. We see that 𝑝(𝑣|0) = 1/𝑛. In other words, if an

adversary knows nothing about a node except that it is part of the network, in which

case 𝑝(0) = 1, then all nodes are equally likely. We see that as an adversary learns more

about a wider neighbourhood of 𝑣, it’s anonymity decreases, until it reaches the

minimum defined by the number of elements in its orbit.
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Example 12 (Continued from Example 5). Consider again the following graph 𝐺.

1 2 3

4

5

6 7 8

As an example, we determine the anonymity of node 2 as a function of 𝑗. At 𝑗 = 0, we

have the trivial case [2]0 = {1, 2, 3, 4, 5, 6, 7, 8} so 𝑎(2, 0) = 8. For 𝑗 = 1, we need to

find all occurrences of the pattern

u v w (8)

such that there is an isomorphism mapping 2 to 𝑣. We find there are four such

occurrences, namely:

1 2 3
,

3 4 6
,

3 5 6
,

6 7 8
. (9)

So we have [2]1 = {2, 4, 5, 7} and thus 𝑎(2, 1) = 4. Similarly, we can compute

[2]2 = {2, 7} and 𝑎(2, 2) = 2. Since [2]2 = Orbit(2), Theorem 10 tells us that

𝑎(2, 𝑗) = 2 for 𝑗 = 2, 3, … , 6. The following table summarizes the value of 𝑎(𝑣, 𝑗) for all

nodes 𝑣 and all relevant values of 𝑗.

𝑎(𝑣, 𝑗) 𝑗

𝑣 0 1 2 3 4 5 6

1 8 2 2 2 2 2 2

2 8 4 2 2 2 2 2

3 8 2 2 2 2 2 2

4 8 4 2 2 2 2 2

5 8 4 2 2 2 2 2

6 8 2 2 2 2 2 2

7 8 4 2 2 2 2 2

8 8 2 2 2 2 2 2

We see that nodes 1, 3,6, and 8 run a larger risk of being exposed then nodes 2, 4, 5 and

7, since knowing just their neighbourhood up to order 1, increases their disclosure

probability to 1/2. For nodes 2, 4, 5, and 7, the disclosure risk is increased to 1/4 when

an adversary obtains information about the structure of their 1st order neighbourhood.

Summarizing, we find that 𝑎(𝑣, 𝑗) can be interpreted as a measure of anonymity of a

node 𝑣 that is induced by the neighbourhood of 𝑣 up to and including distance 𝑗. 𝑎(𝑣, 𝑗)

decreases monotonically with increasing 𝑗 and has natural limits at 𝑗 = 0 and

𝑗 = diam(𝐺). The inverse of 𝑎(𝑣, 𝑗) can be interpreted as the disclosure probability

𝑝(𝑣|𝑗), where 𝑗measures the amount of structural information obtained by an

adversary in advance.

3.3 Anonymity for general neighbourhoods

The anonymity measure defined thus far yields disclosure probability for a target node

when an adversary knows the complete neighbourhood of a target node up to and
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including a certain distance. But what happens when an adversary doesn’t know the

complete neighbourhood? Here we generalize the concept of neighbourhood to any

subgraph of the network that contains the target node. As before we start by defining a

notion of equivalence.

Definition 13. Let 𝐺 be a graph and 𝐴 a subgraph such that 𝑣 is a node of 𝐴. We write

𝑣 ≃𝐴 𝑤 when

– there is a subgraph 𝐴′ of 𝐺 containing 𝑤 and 𝐴′ ≃ 𝐴; and

– there is an isomorphism 𝜙 ∶ 𝑉(𝐴) → 𝑉(𝐴′) such that 𝜙(𝑣) = 𝜙(𝑤).

It can again be demonstrated that ≃𝐴 is an equivalence relation. Hence, given any

subgraph 𝐴 of 𝐺 containing 𝑣, we can define an equivalence class as follows:

[𝑣]𝐴 = {𝑤 ∈ 𝑉 ∶ 𝑤 ≃𝐴 𝑣}. (10)

For a chosen target node 𝑣 and a chosen 𝐴, this separates 𝑉 into two disjunct classes:

those nodes that are 𝐴-equivalent to 𝑣 and those that are not. Equivalently, we see that

each subgraph 𝐴 generates |𝑉(𝐴)| binary partitions of 𝑉(𝐺): one for each node in 𝐴.

This allows us to define a generalized anonymity measure as the cardinality of [𝑣]𝐴:

𝑎(𝑣, 𝐴) = #[𝑣]𝐴. (11)

Analogous to Theorem 10, we can find some limits for [𝑣]𝐴 and hence for 𝑎(𝑣, 𝐴). The

smallest subgraph containing 𝑣 occurs when 𝐴 = ({𝑣}, {}) = 𝑁(𝑣, 0). The largest

subgraph containing 𝑣 occurs when 𝐴 = 𝐺 = 𝑁(𝑣, diam(𝐺)). Furthermore, we have the

following.

Theorem 14. Let 𝐴 and 𝐵 be subgraphs of 𝐺 containing a node 𝑣, such that 𝐴 is a

subgraph of 𝐵. In this case we have [𝑣]𝐴 ⊆ [𝑣]𝐵.

The proof is given in Appendix A.3. This is a generalization of Theorem 10, since we can

always choose 𝐴 and 𝐵 to be neighbourhoods of 𝑣. We immediately obtain that if 𝐴 and

𝐵 are subgraphs of 𝐺 containing 𝑣 such that 𝐴 ⊆ 𝐵, then 𝑎(𝑣, 𝐵) ≤ 𝑎(𝑣, 𝐴). This

property can be used to interpolate between 𝑎(𝑣, 𝑗) and 𝑎(𝑣, 𝑗 + 1) in the following way.

Consider a node 𝑣 and a surrounding neighbourhood 𝑁(𝑣, 𝑗). Every node in 𝑁(𝑣, 𝑗 + 1)

is connected to at least one node in 𝑁(𝑣, 𝑗). We generate a sequence of graphs

𝑁(𝑣, 𝑗), 𝐴, 𝐴′, … , 𝑁(𝑣, 𝑗 + 1) by adding a single node and the edges that connect it to the

nodes in the previous graph in each step. Each previous graph is a subgraph of the next,

and hence we obtain a sequence of anonymity values

𝑎(𝑣, 𝑗) ≥ 𝑎(𝑣, 𝐴) ≥ 𝑎(𝑣, 𝐴′) ≥ ⋯ ≥ 𝑎(𝑣, 𝑗 + 1).

In short, we see that the definition of anonymity developed in Section 3.2 can be

extended to general surroundings of a node. The inclusion Theorem (Theorem 14)

suggests that the anonymity values 𝑎(𝑣, 𝑗) can be interpreted as ‘anonymity land marks’.

This in the sense that if an adversary knows that a target node is part of a subgraph 𝐴,

there is a smallest 𝑁(𝑣, 𝑗) containing 𝐴, and a largest 𝑁(𝑣, 𝑗′) contained by 𝐴, and we

have 𝑎(𝑣, 𝑗) ≤ 𝑎(𝑣, 𝐴) ≤ 𝑎(𝑣, 𝑗′). The rest of this paper focuses on computing 𝑎(𝑣, 𝑗).
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4 Algorithms

We now turn to the question on how to compute anonymity values for nodes of a graph

as a function of 𝑗. For 𝑗 = 0, the calculation is trivial: 𝑎(𝑣, 0) = 𝑛 (𝑛 the number of

nodes) for all nodes 𝑣. For 𝑗 ≥ diam(𝐺), we need to find the orbits of nodes in the

graph. One approach is to first find all automorphisms, and then apply Equation 4 to

generate the orbits. This problem is notoriously hard: generating all automorphisms

could take exponential time, and it is currently unknown whether a polynomial method

can be developed to find a smaller set of generating elements of the automorphism

group. A generating set of elements is a subset of Aut(𝐺) that recreates Aut(𝐺) by

multiplying the generating elements in different combinations and orders. It can be

shown (e.g. Arvind (2007)) that finding a generating set for Aut(𝐺) is equivalent to the

graph isomorphism problem. Babai (2015) claims in a yet unconfirmed proof that it can

be solved in quasipolynomial time. An recent overview of confirmed graph isomorphism

approaches is given by McKay and Piperno (2014) and a recent discussion of algorithms

for finding orbits is given by Mowshowitz and Mitsou (2009).

A natural approach to computing anonymity values for all nodes and all 𝑗 is to exploit that

two nodes can only be equivalent with respect to ≃𝑗+1, when they are equivalent with

respect to ≃𝑗 (Theorem 10). Algorithm 1 shows one way to organize the administration

when splitting a ≃𝑗 equivalence class of nodes into a set of ≃𝑗+1 equivalence classes.

The approach to compute all equivalence classes is then to start with the set [𝑣]0, and to

apply Algorithm 1 recursively to each element of the output until no further split can be

achieved. This is the approach taken to compute the results shown in Section 5.

Algorithm 1: Split an equivalence class of order 𝑗 into a set of 𝑗+1 equivalence classes.

1 Input: An equivalence class [𝑣]𝑗.

Result: A partition 𝑈 of [𝑣]𝑗, where each element of 𝑈 is a 𝑗 + 1 equivalence class.

2 𝑈 ← {}

3 while [𝑣]𝑗 ≠ {} do

4 Choose a 𝑣′ from [𝑣]𝑗
5 for [𝑢]𝑗+1 ∈ 𝑈 do

6 if 𝑣′ ≃𝑗+1 𝑢 then

7 [𝑢]𝑗+1 ← [𝑢]𝑗+1 ∪ {𝑣
′} /* Add 𝑣′ to equiv class */

8 [𝑣]𝑗 ← [𝑣]𝑗 − {𝑣
′}

9 break

10 if 𝑣′ ∈ [𝑣]𝑗 then

11 𝑈 ← 𝑈 ∪ {{𝑣′}} /* Start new equiv class [𝑣′]𝑗+1 */

12 [𝑣]𝑗 ← [𝑣]𝑗 − {𝑣
′}

Example 15. Consider again the graph 𝐺 of Examples 5 and 12. Starting at 𝑗 = 0 we get

𝑈 = {1, 2, … , 8}. This is split into three equivalence classes using Algorithm 1. One of

the resulting classes ([2]1) is split again into two classes. This yields a tree structure as

shown below (we suppress branches that do not yield any new splits).
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{1, 2, 3, 4, 5, 6, 7, 8}

{2, 4, 5, 7}{1, 8} {3, 6}

{2, 7} {4, 5}

j = 1

j = 0

j = 2

In this simple example, we can stop the recursive application of Algorithm 1 because the

orbits of all nodes are known. In practice this will not be the case. We can stop the

recursion when either 𝑗 reaches the diameter of the largest component of 𝐺, or when a

node ends up in a singleton set: i.e. when [𝑣]𝑗 = {𝑣}.

5 An example

Algorithm 1 was implemented in Python, and results subsequently analyzed with R and

igraph (R Core Team, 2020; Csardi and Nepusz, 2006). The main difficulty of this

method is in line 6, where it is established whether two nodes are equivalent in order

𝑗 + 1. We used the NetworkXmodule of Haghberg et al. (2019) to determine whether

two neighbourhoods are isomorphic, and to compute explicit isomorphisms between

neighbourhoods, when they are.

For reasons to be discussed, the current implementation takes a long time to run, even

for networks of moderate size. For this reason we present a calculation on a scale-free

network with 100 nodes, 2 edges per added node, and scale parameter 𝛼 = 24). We

computed the equivalence classes up to and including 𝑗 = 1.

The resulting equivalence classes are summarized in Figures 5.2. In the following table,

we summarize how many nodes have a certain anonymity value. We also list into how

many different classes each set of nodes with the same anonymity occur.

𝑎(𝑣, 1) 𝑝(𝑣|𝑗) #nodes #classes

1 1.000 10 10

2 0.500 4 2

4 0.250 4 1

5 0.200 5 1

7 0.143 7 1

15 0.067 15 1

55 0.018 55 1

4) A scale-free network is constructed by adding nodes and connecting them with𝑚 (here: 2) links to exist-

ing nodes. The probability of connecting to an existing node is proportional to the number of connections

it already has. The result is a network where the probability that a node has degree 𝑘 is proportional to

𝑘−𝛼, in expectation. See e.g. Newman (2018, Chapter 14) for a textbook discussion.

CBS | Discussion paper | April 21, 2022 14



Here, each row lists the computed anonymity, the disclosure risk, the number of nodes

having this anonymity, and the number of different classes with this anonymity (given by

#nodes/𝑎(𝑣, 1)). For example, there are 10 nodes that are unique for 𝑗 = 1. Since each

node is alone in its equivalence class, there are 10 such classes, and each such node is

fully re-identified (𝑝(𝑣|𝑗) = 1) when an adversary knows the structure of its first order

neighbourhood.

Figure 5.1 shows the unique nodes and their respective first order neighbourhoods.

Unique nodes include the nodes with highest degree, as expected, but there are a few

nodes with neighbourhoods that do not seem special in any way. This may be an artefact

of the small network size and low number of edges. Nevertheless, it is clear that these

nodes run the highest risk of being re-identified based on knowledge of their

surrounding network structure.

Figure 5.2 summarizes the nodes with higher anonymity. The largest anonymity class

contains 55 nodes: more than half of the nodes in this network have a triangle as their

first order neighbourhood. These nodes have the highest anonymity and thus the least

change of being re-identified based on knowing their first-order neighbourhood:

𝑝(𝑣|𝑗) = 1/55 ≈ 0.018.
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Figure 5.1 Top: nodes that are unique in order 𝑗 = 1. Bottom: the unique

nodes in their 1st order neighbourhoods.
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a(v,1) = 15 a(v,1) = 55

a(v,1) = 5 a(v,1) = 7

a(v,1) = 4 a(v,1) = 2

a(v,1) = 2

Figure 5.2 Equivalent node sets in a scale-free network. Anonymity values

are at the top left, the insets show the prototype neighbourhood and central

node.
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6 Discussion and possible ways

forward

The current implementation of computing anonymity values is naive, in the sense that

for each value of 𝑗, and for each pair of candidates 𝑣 and 𝑤, the neighbourhoods are

derived, it is determined whether they are isomorphic, and if they are, it is determined

whether there is an isomorphism mapping 𝑣 to 𝑤. In the current implementation this

means that a lot of calculations are done and redone. The purpose of this section is to

point out a few possible ways that would allow for quicker calculations in realistic

networks.

One way forward is to keep an administration of isomorphisms, as we let the

neighbourhoods surrounding two compared nodes grow. The inclusion Theorem 10,

relies on the fact that if we have an isomorphism 𝑁(𝑣, 𝑗 + 1) → 𝑁(𝑤, 𝑗 + 1) that maps 𝑣

to𝑤, we can by restriction find an isomorphism 𝑁(𝑣, 𝑗) → 𝑁(𝑤, 𝑗) that maps 𝑣 to𝑤. We

can wonder if we can also go the other way around: perhaps it is possible to start with

an isomorphism 𝑁(𝑣, 𝑗) → 𝑁(𝑤, 𝑗) and extend it to 𝑁(𝑣, 𝑗 + 1) → 𝑁(𝑤, 𝑗 + 1). It turns

out, we can, but there is a caveat.

Consider the following situation, where we’ve found that 𝑣 and 𝑤 are equivalent to

order 𝑗 = 1. Below we depict an example, where the dashed arrow represent an

isomorphism 𝜙 connecting the two neighbourhoods and where 𝜙(𝑣) = 𝑤.

v

N(v, 1)

w

N(w, 1)

Now suppose we move on to 𝑗 = 2. We find again that 𝑁(𝑣, 2) ≃ 𝑁(𝑤, 2) and attempt

to extend 𝜙 by adding the mapping between node 𝑠 and 𝑡 as shown below.

v

N(v, 2)

s

w

t

N(w, 2)

However, we now discover that part of what was originally an isomorphism, now maps

between nodes of different degrees. These mappings are depicted here with thick

arrows. The solution is to go back, and choose another isomorphism between 𝑁(𝑣, 1)

and 𝑁(𝑤, 1) that maps 𝑣 to 𝑤.

CBS | Discussion paper | April 21, 2022 18



v

N(v, 1)

w

N(w, 1)

And indeed, this one can be extended successfully.

v

N(v, 2)

s

w

t

N(w, 2)

In this case, the ‘mistake’ in choosing an isomorphism to extend was discovered at the

first extension, moving from 𝑗 to 𝑗 + 1. However in the general case we can not exclude

the possibility that such a wrong turn is discovered only at a later step. This suggests a

strategy where we explore possible paths of extending (sequences of ) isomorphisms

that map 𝑣 to 𝑤.

A second, and more straightforward way to gain performance is to use the fact that

Algorithm 1 can be run in parallel over equivalence classes. This follows from the fact

that nodes can only be equivalent in order 𝑗 + 1 when they are equivalent in order 𝑗. A

third way forward is to use a compiled language in stead of a scripting language such as

Python.

It is worth noting that these algorithms are in close relation to the graph isomorphism

problem. In fact, Algorithm 1 described here turns out to be similar to what McKay and

Piperno (2014) in a review of graph isomorphism approaches call a ‘refinement

function’. The complexity of determining whether two graphs are isomorphic is a famous

open problem, although a recent, yet unconfirmed claim of Babai (2015) states that it

can be solved in quasipolynomial time. Another area that is interesting in this respect is

the literature on graphlet analyses. A graphlet is a small connected graph, and in

graphlet analyses a node is characterized by the graphlets in which it appears. See

Sarajlić et al. (2016); Rahman (2016), Hočevar et al. (2016) for some recent references.

Graphlet analyses may also offer ways to approximate anonymity values rather than

computing them exactly.

7 Summary and conclusion

Network data offers interesting ways for official statisticians and scientists to investigate

society and economy. Making anonymized network microdata available for research or
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publication presents new challenges for Statistical Disclosure Control, since network

structure may facilitate re-identification of nodes. In order to assess the risk of

re-identification, a measure of non-uniqueness, or anonymity of nodes with regard to

surrounding network structure is necessary.

In this paper we have defined a measure of anonymity that is based on counting the

number of nodes that have the same surrounding neighbourhood, while playing the

same role in that neighbourhood. It was demonstrated that this measure has a few

pleasant properties: the notion of anonymity increases as more of a node’s surrounding

network structure is known, and there are natural limits, in cases where the complete

graph is known or when nothing is known of a node’s surroundings.

Moving forward, there are a number of open issues. The first practical issue is that we

currently have no algorithm allowing for fast calculation of anonymity values. In this

paper we have pointed out a few possible ways to make progress, including improving

the current approach and perhaps searching for ways to approximate anonymity.

A second issue regards the statistical properties of anonymity, in different network

models. For example, it would be interesting to know which levels of anonymity one

may hope to achieve, given that a network has the properties of a scale-free, or

Erdős-Rényi network.

Third, the question on how to improve anonymity in a network is as of yet open. At the

moment we have no methodology to perturb or suppress parts of a network data while

keeping important statistical properties intact.

Fourth, from the point of view of disclosure control there is the question of anonymity in

the case where the data does not cover the population. That is, the data may cover only

a (sampled) part of the population. How to translate such situations to the case of

network data is not discussed in this work —we have silently assumed that the available

network data covers the population.

Finally, there may be other attack scenarios based on structural properties, such as a

node’s betweennes or centraelity. These have not been treated here.
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Appendix

A Proofs

A.1 Equivalence relation for nodes

Proof. We need to show that ≃𝑗 is reflexive, symmetric, and transitive. Let 𝑣,𝑤, 𝑢 be

nodes of 𝑉.

Reflexivity: we have 𝑁(𝑣, 𝑗) ≃ 𝑁(𝑣, 𝑗) and we can choose the identity function as the

isomorphism mapping 𝑣 to 𝑣.

Symmetry: if 𝑣 ≃𝑗 𝑤 then 𝑁(𝑣, 𝑗) ≃ 𝑁(𝑤, 𝑗) so 𝑁(𝑤, 𝑗) ≃ 𝑁(𝑣, 𝑗) by definition of graph

isomorphism. If 𝑣 ≃𝑗 𝑤 then there is a bijection 𝜙 sending 𝑣 to 𝑤 and we can choose

the inverse of 𝜙 as the isomorphism mapping 𝑤 to 𝑣.

Transitivity: suppose 𝑣 ≃𝑗 𝑤 ∧ 𝑤 ≃𝑗 𝑢. By transitivity of graph isomorphism we have

𝑁(𝑣, 𝑗) ≃ 𝑁(𝑢, 𝑗). Now, let 𝜙 ∶ 𝑁(𝑣, 𝑗) → 𝑁(𝑤, 𝑗) be the isomorphism such that

𝜙(𝑣) = 𝑤 and let 𝜃 ∶ 𝑁(𝑤, 𝑗) → 𝑁(𝑢, 𝑗) be the isomorphism such that 𝜃(𝑤) = 𝑢. The

composit 𝜃𝜙 is an isomorphism 𝑁(𝑣, 𝑗) → 𝑁(𝑢, 𝑗) such that (𝜃𝜙)(𝑣) = 𝑢.

A.2 Proof of Theorem 10

The hardest part is to prove the inclusion property. The intuition behind the proof is to

show that two nodes can only be equivalent in order 𝑗 when they are equivalent in order

𝑗 − 1.

Proof. For the equality Orbit(𝑣) = [𝑣]𝛿, observe that if 𝑣 ≃𝛿 𝑤 then

𝑁(𝑣, 𝛿) = 𝑁(𝑤, 𝛿) = 𝐺 so the isomorphism mapping 𝑣 to 𝑤 is an automorphism of 𝐺.

To demonstrate the inclusion properties, suppose that 𝑣 ≃𝑗 𝑤, 𝑗 > 0. This means that

there is an isomorphism 𝜙 ∶ 𝑁(𝑣, 𝑗) ↦ 𝑁(𝑤, 𝑗) such that 𝜙(𝑣) = 𝑤. Now define

𝜙′ ∶ 𝑁(𝑣, 𝑗 − 1) ↦ 𝑁(𝑤, 𝑗 − 1) as the restriction of 𝜙 to 𝑁(𝑣, 𝑗 − 1). This is again an

isomorphism with 𝜙′(𝑣) = 𝑤, and hence 𝑣 ≃𝑗−1 𝑤. Thus, if 𝑤 ∈ [𝑣]𝑗 it must also be in

[𝑣]𝑗−1, as desired.

For the equality, [𝑣]0 = 𝑉, choose a particular 𝑣 ∈ 𝑉. We have 𝑁(𝑣, 0) = ({𝑣}, {}). Thus

for each 𝑤 ∈ 𝑉 there is a unique isomorphism 𝜙∗ ∶ 𝑁(𝑣, 0) ↦ 𝑁(𝑤, 0) such that

𝜙∗(𝑣) = 𝑤. Hence, 𝑣 ≃0 𝑤 for all 𝑤 ∈ 𝑉.
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A.3 Proof of Theorem 14

The proof is very similar to the proof of the inclusion property of Theorem 10.

Proof. Suppose that 𝑣 ≃𝐵 𝑤, so that 𝑤 ∈ [𝑣]𝐵. This means that there is a subgraph 𝐵′

in 𝐺 containing 𝑤, such that 𝐵 ≃ 𝐵′ and there is an isomorphism 𝜙 ∶ 𝑉(𝐵) → 𝑉(𝐵′)

such that 𝜙(𝑣) = 𝑤. The restriction of 𝜙 to 𝑉(𝐴) (with 𝐴 ⊆ 𝐵) is also an isomorphism.

It maps nodes of 𝐴 to a subgraph 𝐴′ of 𝐵′. Since 𝑣 is an element of 𝑉(𝐴), we have again

that 𝑣maps to 𝑤. Hence: 𝑣 ≃𝐴 𝑤 and [𝑣]𝐵 ⊆ [𝑣]𝐴 as desired.
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