Modernization of Statistical Production with R

Mark van der Loo

Statistics Netherlands, University of Leiden

2023-12-13

Modernization

General Motivation

Less
control

More
volatile

~_

Harder
to get

~_

Administrative

DN
www

TR

Web/Big/Sensor

Privately Held

s

(fajalij2]s iy

®| e @
eurostat OECD .unw,

Legal obligations
Comparable over time and space

IREZ

:‘ggya
R %
Lagty

Current events
Quick Response

Modernization at Statistics Netherlands

Minimize Human
Effort

Creating statistics Monitoring automated processes

The rest of this talk

My approach to developing packages

Why | think R has great features for

P Standardization and Reuse
P Rule-based data processing
» Modularity

P Building User Interfaces

General Approach

Drill down to a
fundamental
(math) problem

Package like
an app

= {}
for a &€ Ado
i=0
d= f*({a})
while i <1 A —=3(d) do

grpvars, drop=FALSE]

el, j)
i=i41 while (j < test(d)){
drlf (f* o Fy o Fy)(a) Build the core o < pultback(out_L

en

if i <nV/3(d) then
| R=RU{(a,i,o(d))}
end

end

Approach

~
e “\\
{ .
(Practical Issue 3 The P cut ~_ Sa
' N/ -
| - _
N ‘ /»
NN \ -
Drill down to a)
fundamental Package like
(math) problem an app
R={}
for a € Ado
i=0

= ({a)

while i < n A —3(d) do

j <
out_level t
pullback (out

i=i4+1
d=(f*oF;oF)(a) .
end Build the core

if i <nV/3(d) then
| R=RU{(a,i,o(d))}
end

end

Standardization and Reuse

Standardization and Reuse with R

P 19k packages

P 108k hard dependencies

P Higly standardized
P> Description and organization
P Dependencies
P Documentation

P> Each package passes checks:
P tests, examples
P documentation, urls
P code sanity

P Works on Windows, Linux, MacOS

P Works for previous, current, and
development release of R

P All dependencies resolve

P 4 volunteers + payed students @

CRAN dependency network
(giant component)

Rule-based data processing

Rule-based data processing

What ‘ Rules ‘ ‘ Rules ‘
mm |

How -1 3 ——»| Process » Process ... ——» Process ——p

Rule-based data processing

What ‘ Rules ‘ ‘ Rules ‘ m
X Y I I

How -1 3 ——» Process » Process ... —m Process ——p

9 5

data |>
dplyr::filter(x > 0) [>
dplyr: :summarise (X = mean(X), Y=mean(Y)) [>
t0O @

Rule-based data processing

Changes fast

What User
XY

How -1 3 ——» Process » Process ... ——» Process ——p Y 8 Dev
9 5

Changes slow

Rules should be documented; version controlled; stored and maintained externally.

The validate package

DEMO

The validate package

Approach
1. Theory: v: DX < {T F}
2. Implementation of core theory into R
3. Design user interface / workflow
P CRUD operations
P Selecting
P Investigating (e.g. variables())

P Validation + summarization of
results

https://github.com/SNStatComp/GenericValidationRules

The validate package

Approach
1. Theory: v: DX < {T F}
2. Implementation of core theory into R
3. Design user interface / workflow
P CRUD operations
P Selecting
P Investigating (e.g. variables())
P Validation + summarization of
results

[n

=

Result P
1. User-defined rules. ‘g
2. Easy to learn/get started. s
3. Backend extensible (e.g. validatedb)

4. Use rules as input for other packages.
(e.g. errorlocate)
5. Reason, investigate, manipulate rules

and rulesets.

&

https://github.com/SNStatComp/GenericValidationRules

The validate package

Approach Result
1. Theory: v: DK < {T,F} 1. User-defined rules.
2. Implementation of core theory into R 2. Easy to learn/get started. . 0
3. Design user interface / workflow 3. Backend extensible (e.g. validatedb)
P CRUD operations 4. Use rules as input for other packages.
P Selecting (e.g. errorlocate)

P Investigating (e.g. variables())
P Validation + summarization of
results

o

Reason, investigate, manipulate rules
and rulesets.

NB

In a 2020 we demonstrated that all ‘generic’ data validation rules for the ESS be
expressed with validate. https://github.com/SNStatComp/GenericValidationRules

https://github.com/SNStatComp/GenericValidationRules

Contrasting approach (e.g. PointBlank, DataMaid)

Approach

1. Collect individual validation cases.
2. Implement each case in a function.

Contrasting approach (e.g. PointBlank, DataMaid)

Approach Result
1. Collect individual validation cases. 1. No user-defined rules
2. Implement each case in a function. 2. Need to read manual for each function
3. Rules not reusable accros packages
4. No (systematic) manipulation or
investigation of rules and rulesets.

&

Why R?
R has the ‘reflexive’ property

head(cars, 3)

speed dist
1 4 2
2 4 10
3 7 4

r <- expression(dist > speed)
eval(r, head(cars,3))

[1] FALSE TRUE FALSE
r[[1]]1[[1]] == ">"
[1] TRUE

Why R?
R has the ‘reflexive’ property

head(cars, 3)

speed dist
1 4 2
2 4 10
3 7 4

r <- expression(dist > speed)
eval(r, head(cars,3))

[1] FALSE TRUE FALSE
r[[1]]1[[1]] == ">"
[1] TRUE

Anatomy of validate (pseudocode) E%

parse o
rules <- parse(file="rulefile.R")
v <- new_validator() 2
for (r in rules){
if (is_validating(r)){
v<-vVv+r

}
}

eval
out <- new_validation()
for (r in v){

out <- out + eval(r, data) y
}

More information

- Journal of Statistical Softwware

Data Validation Infrastructure for R

Wiley StatsRef: N3
Statistics Reference Online

Data Validation

M

1. Introduction

MPJ van der Loo, E de Jonge (2021). Data
Validation Infrastructure for R. Journal of
Statistical Software 1-22 97

MPJ van der Loo, E de Jonge (2020). Data
Validation. In Wiley StatsRef: Statistics
Reference Online, pages 1-7. American Cancer
Society.

(@) unece modensiats

M.P.J. van der Loo, E. de Jonge, K.O. ten Bosch
(2022). Rule Management. UNECE Expert
Meeting on Statistical Data Editing.

Modularity

Why Modularity is Difficult

1. Perspectives on Modules

'y U

/

/ \
{ Users T |
\ g ./

| Methods Processes |
\ \ /
\

\\\ B/ e 4

Why Modularity is Difficult

1. Perspectives on Modules

/ T ~
Y) PN \
/ f
| Users IT
\/ > '“::V\// e \
y / 4

Why Modularity is Difficult

1. Perspectives on Modules

/ N\
/ gof
Users IT
a b c

Methods Processes |

,,//

Ideal Modules
Are easy to understand and use (app-like); composable; implement a single piece of

methodology; are controllable from the outside (rules/parameters).
uRosConf
.

Examples of modules for data processing

validate ¢ | dcmodify validate
errorlocate

What ‘ validate ‘ ‘ modifier ‘
X Y I I

How =l | B »-replace_errors > modify » impute_Ir »>

Examples of modules for data processing

validate ¢ | dcmodify validate
errorlocate

What ‘ validate ‘ ‘ nodfier ‘
X Y I I

How =l | B »-replace_errors > modify » impute_Ir »>

Note
P Composing from left to right
P Modules can be independently added or removed @

A module for process monitoring (logging)?

What ‘ Rules ‘ ‘ Rules ‘
How -1 3 ——p»| Process » Process ... —m| Process ——p Y.IB
9 5 |] |]

A module for process monitoring (logging)?

What ‘ Rules ‘ ‘ Rules ‘ m
X Y I I
X 2

How 1 3 ——p| Process » Process ... —m| Process ——p Y 8
)15 | | | |]
‘ Log ‘ ‘ Log Log

Question
P How to implement a module that can be independently added for logging? @

It can be done: lumberjack

DEMO

How does that work? 1: Adding a second data stream

Concept
A sequence of R expressions e;; ¢ = 1,2, ... n, executed in order can be considered as
one long composed expression

e 0-oe.

n n—1

The idea is to replace this boring composition operator with an interesting one.

How does that work? 1: Adding a second data stream

source() (schematically)

expressions <- parse("myfile.R")
for (e in expressions){
eval(e)

¥

How does that work? 1: Adding a second data stream
source() (schematically)

expressions <- parse("myfile.R")
for (e in expressions){
eval(e)

¥

run_file() (schematically)

expressions <- parse("myfile.R")
n<-0
for (e in expressions){

eval(e)

n<-n+1

}
printf ("Counted %d expressions\n",n) @

How does that work? 2: communication from user stream to log stream

myfile.R

X <= runif(1)
start_counting()
y <- 20
zZ<-xX+y

How does that work? 2: communication from user stream to log stream

myfile.R

x <- runif (1)
start_counting()
y <- 20
zZ<-xX+y

Concept
A special expression (like start_counting()) changes the compostion operator.

nilo oek O ++s O 61

How does that work? 2: communication from user stream to log stream

myfile.R

x <- runif (1)
start_counting()
y <- 20
zZ<-xX+y

Concept
A special expression (like start_counting()) changes the compostion operator.

enoenilo oek O ++s O 61

P Analyze-Abstract-Syntax—Tree? if (x >= 0.5) start_counting()

P Smuggle information from the special expression to the file runner.

Creating a smuggler with higher order functions

make_smuggler <- function(fun, env){
function(...){
envyresult <<- fun(...) # smuggle the result of 'fun' to 'env'
envéresult

e

}
}

Creating a smuggler with higher order functions

make_smuggler <- function(fun, env){
function(...){
envyresult <<- fun(...) # smuggle the result of 'fun' to 'env'
envéresult

e

}
}

store <- new.env()
mymean <- make_smuggler(mean, store)

mymean(1:3) # works just like 'mean'

(1] 2

store$result # but the result is also copied into 'store'

0 O

Using a smuggler in run_file()
start_counting <- function() return(TRUE)
run_file <- function(rfile){

runtime <- new.env()
store <- new.env()

runtime$start_counting <- smuggler(start_counting, store)

expressions <- parse(rfile)
n <-0
for (e in expressions){
eval (e, runtime)
if (isTRUE(store$result)) n <- n + 1
}

printf ("Executed %d expressions", n)
}

Design of lumberjack

Approach
1. Theory:

P custom file runner
P local side effect (smuggler)
P local masking
2. Implement core into R
3. Design user interface
P start/stop/pause/dump
P Logger objects and interface

uRosConf
-

Design of lumberjack

Approach
1. Theory:

P custom file runner
P local side effect (smuggler)
P local masking
2. Implement core into R
3. Design user interface
P start/stop/pause/dump
P Logger objects and interface

Result
1.
2.

3.

Easy to get started/learn
Extensible with new loggers
P Integration with validate

Composable (1 LoC)
Clean separation between runtime
environment and logging environment.

Contrasting approaches: most logging packages

Approach

1. Define specific logging use cases
P fixed output format/type
P fixed output target/type
P logging level

2. Implement as R functions

Contrasting approaches: most logging packages

Approach Result
1. Define specific logging use cases 1. Easy to get started/learn
P fixed output format/type 2. Need to insert code in several places
P fixed output target/type 3. Usually not extensible w/new loggers
4

P logging level . Logging takes place in runtime
2. Implement as R functions environment

5. Same approach used in tinytest

&

Modularity: Why R?

All modules
P R package system

‘cross-cutting’ modules, like logging
P Higher-order functions (func. lang.)
P Reflexive: parse/eval and masking
P Environment as smugglers’ path

More information

18.8097: Programming with Categories

IAP 2020

B. Fong, B Milewski, D. Spivak (2020)
Programming with categories; online lectures
http://brendanfong.com/programmingcats.html

CATEGORY THEORY
FORPROGRAMMERS

B. Milewski (2019) Category theory for
programmers. Blurb.com.

A Method for Deriving Information from
Running R Code
i A

Introduction

he Rfournal Vo 13/, e 221 e

Mark P.J. van der Loo (2021). A Method for
Deriving Information from Running R Code. The
R Journal 13 42-52

ournal of Statistical Soft

MPJ van der Loo (2021). Monitoring data in
with the lumberjack package. Journal of
Statistical Software 98 1-11

http://brendanfong.com/programmingcats.html
https://www.blurb.com/b/9621951-category-theory-for-programmers-new-edition-hardco

User interface

Example: simputation

Example data
staff turnover other.rev total.rev staff.costs

1 75 NA NA 1130 NA
2 9 1607 NA 1607 131
3 NA 6886 -33 6919 324

Example: simputation

Example data
staff turnover other.rev total.rev staff.costs

1 75 NA NA 1130 NA
2 9 1607 NA 1607 131
3 NA 6886 -33 6919 324
Issues

P Need for fall-through scenario for imputation
P Multiple variables to impute
P Multiple models

Imputation in R

Specialized packages
P 100+ available (VIM, mice, Amelia, mi, ...)
P Interfaces vary (a lot)

DIY with model/predict

m <- 1Im(Y ~ X, data = mydata)

ina <- is.na(mydata$yY)

mydatal[ina, "Y"] <- predict(m, newdata = mydatalina,])

YMMV, be cause how 'predict' works, depends on the model

Result
P Lots of ‘boilerplate’ code needed, covering many cases

P Hard to experiment and test @

|dea of the simputation package

Provide
P a uniform interface,
P with consistent behaviour,
P across commonly used methodologies

To facilitate
P> experimentation
P configuration for production

The simputation interface

impute_<model>(data
, <imputed vars> ~ <predictor vars>
, [options])

The simputation interface

impute_<model>(data
, <imputed vars> ~ <predictor vars>
, [options])

Example: linear model imputation

impute_lm(ret, other.rev ~ turnover) |[> head(3)

staff turnover other.rev total.rev staff.costs

1 75 NA NA 1130 NA
2 9 1607 5427.113 1607 131
3 NA 6886 -33.000 6919 324

Fall-through scenario by chaining imputations

ret |>
impute_lm(other.rev ~ turnover + staff) |[>
impute_lm(other.rev ~ staff) |[>
head (3)

staff turnover other.rev total.rev staff.costs
1 75 NA 13914.261 1130 NA
2 9 1607 6089.698 1607 131
3 NA 6386 -33.000 6919 324

Other features

P Impute multiple variables with the same model
P Groupwise imputation
P Multivariate methods (e.g. missForest, EM)

Approach

Approach

1. Essentials of specification
2. Map to R features (formula-data)
3. Build on top of existing packages

Approach

Approach Result
1. Essentials of specification 1. Easy to learn and use :-)
2. Map to R features (formula-data) 2. Fall-through scenarios supported :-)
3. Build on top of existing packages 3. Not driven by external rules : -/
4. Hard to extend :-(

Why R?

P Availabitlity of many existing imputation methods
P Formula-data interface for model specification
P Packaging model, and CRAN

Summary

In my experience

Peeling off a practical issue until a math problem remains
P> Is essential to achieve true modularity and composability;
P Truly separates concerns between user needs (domain knowledge) and
programming.
P Yields extensible solutions;
P> Creates interfaces that are almost automatically user-friendly

What makes R specifically suited for modernization?

High level of abstraction
Higher order functions, reflexivity facilitate true modularity and composability.

What makes R specifically suited for modernization?

High level of abstraction
Higher order functions, reflexivity facilitate true modularity and composability.

Functional language and reflexivity
Allows for quick development of domain-specific languages embedded into R

What makes R specifically suited for modernization?

High level of abstraction
Higher order functions, reflexivity facilitate true modularity and composability.

Functional language and reflexivity
Allows for quick development of domain-specific languages embedded into R

Abstractions for model-building
Formula-data interface facilitate user-friendly interfaces.

What makes R specifically suited for modernization?

High level of abstraction
Higher order functions, reflexivity facilitate true modularity and composability.

Functional language and reflexivity
Allows for quick development of domain-specific languages embedded into R

Abstractions for model-building
Formula-data interface facilitate user-friendly interfaces.

Packaging system and CRAN
Nothing beats CRAN in terms of consistency accross dependencies, quality checks and
standardization.

What makes R specifically suited for modernization?

High level of abstraction
Higher order functions, reflexivity facilitate true modularity and composability.

Functional language and reflexivity
Allows for quick development of domain-specific languages embedded into R

Abstractions for model-building
Formula-data interface facilitate user-friendly interfaces.

Packaging system and CRAN
Nothing beats CRAN in terms of consistency accross dependencies, quality checks and
standardization.

The R community (you!)

Thank you

markvanderloo.eu/publications.html

	Modernization
	Rule-based data processing
	Modularity
	User interface
	Summary

