

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

Modernization of Statistical Production with R

Mark van der Loo

Statistics Netherlands, University of Leiden

2023-12-13

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

Modernization

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

General Motivation

Web/Big/Sensor

Survey

Administrative

Privately Held

More
volatile

Less
control

Harder
to get

Legal obligations
Comparable over time and space

Current events
Quick Response

Input Throughput Output

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

Modernization at Statistics Netherlands

Modular
infrastructure,
software, methods,
processes

Standardized
(meta)data, infrastructure,
software, methods,
processes

Rule-based
processes

Re-use
(meta)data, infrastructure,
software, methods,
processes

Minimize Human
Effort

Creating statistics Monitoring automated processes

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

The rest of this talk

My approach to developing packages

Why I think R has great features for
▶ Standardization and Reuse
▶ Rule-based data processing
▶ Modularity
▶ Building User Interfaces

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

General Approach

Practical Issue

Drill down to a
fundamental
(math) problem

Build the core

Package like
an app

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

Approach

Practical Issue

Drill down to a
fundamental
(math) problem

Build the core

Package like
an app

The evil shortcut

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

Standardization and Reuse

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

Standardization and Reuse with R

CRAN dependency network
(giant component)

▶ 19k packages
▶ 108k hard dependencies
▶ Higly standardized

▶ Description and organization
▶ Dependencies
▶ Documentation

▶ Each package passes checks:
▶ tests, examples
▶ documentation, urls
▶ code sanity

▶ Works on Windows, Linux, MacOS
▶ Works for previous, current, and

development release of R
▶ All dependencies resolve
▶ 4 volunteers + payed students

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

Rule-based data processing

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

Rule-based data processing

Process

X Y

-1 3

 9 5

Rules

Process

Rules

. . . Process

Rules

X 2

Y 8

What

How

data |>
dplyr::filter(x > 0) |>
dplyr::summarise(X = mean(X), Y=mean(Y)) |>
t()

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

Rule-based data processing

Process

X Y

-1 3

 9 5

Rules

Process

Rules

. . . Process

Rules

X 2

Y 8

What

How

data |>
dplyr::filter(x > 0) |>
dplyr::summarise(X = mean(X), Y=mean(Y)) |>
t()

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

Rule-based data processing

Process

Rules

Process

Rules

. . . Process

Rules

X Y

-1 3

 9 5

X 2

Y 8

What

How

User

Dev

Changes fast

Changes slow

Rules should be documented; version controlled; stored and maintained externally.

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

The validate package

DEMO

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

The validate package

Approach
1. Theory: 𝑣 ∶ 𝐷𝐾 ↪ {T, F}
2. Implementation of core theory into R
3. Design user interface / workflow

▶ CRUD operations
▶ Selecting
▶ Investigating (e.g. variables())
▶ Validation + summarization of

results

Result
1. User-defined rules.
2. Easy to learn/get started.
3. Backend extensible (e.g. validatedb)
4. Use rules as input for other packages.

(e.g. errorlocate)
5. Reason, investigate, manipulate rules

and rulesets.

NB
In a 2020 we demonstrated that all ‘generic’ data validation rules for the ESS be
expressed with validate. https://github.com/SNStatComp/GenericValidationRules

https://github.com/SNStatComp/GenericValidationRules

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

The validate package

Approach
1. Theory: 𝑣 ∶ 𝐷𝐾 ↪ {T, F}
2. Implementation of core theory into R
3. Design user interface / workflow

▶ CRUD operations
▶ Selecting
▶ Investigating (e.g. variables())
▶ Validation + summarization of

results

Result
1. User-defined rules.
2. Easy to learn/get started.
3. Backend extensible (e.g. validatedb)
4. Use rules as input for other packages.

(e.g. errorlocate)
5. Reason, investigate, manipulate rules

and rulesets.

NB
In a 2020 we demonstrated that all ‘generic’ data validation rules for the ESS be
expressed with validate. https://github.com/SNStatComp/GenericValidationRules

https://github.com/SNStatComp/GenericValidationRules

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

The validate package

Approach
1. Theory: 𝑣 ∶ 𝐷𝐾 ↪ {T, F}
2. Implementation of core theory into R
3. Design user interface / workflow

▶ CRUD operations
▶ Selecting
▶ Investigating (e.g. variables())
▶ Validation + summarization of

results

Result
1. User-defined rules.
2. Easy to learn/get started.
3. Backend extensible (e.g. validatedb)
4. Use rules as input for other packages.

(e.g. errorlocate)
5. Reason, investigate, manipulate rules

and rulesets.

NB
In a 2020 we demonstrated that all ‘generic’ data validation rules for the ESS be
expressed with validate. https://github.com/SNStatComp/GenericValidationRules

https://github.com/SNStatComp/GenericValidationRules

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

Contrasting approach (e.g. PointBlank, DataMaid)

Approach
1. Collect individual validation cases.
2. Implement each case in a function.

Result
1. No user-defined rules
2. Need to read manual for each function
3. Rules not reusable accros packages
4. No (systematic) manipulation or

investigation of rules and rulesets.

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

Contrasting approach (e.g. PointBlank, DataMaid)

Approach
1. Collect individual validation cases.
2. Implement each case in a function.

Result
1. No user-defined rules
2. Need to read manual for each function
3. Rules not reusable accros packages
4. No (systematic) manipulation or

investigation of rules and rulesets.

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

Why R?
R has the ‘reflexive’ property
head(cars, 3)

speed dist
1 4 2
2 4 10
3 7 4
r <- expression(dist > speed)
eval(r, head(cars,3))
[1] FALSE TRUE FALSE
r[[1]][[1]] == ">"
[1] TRUE

Anatomy of validate (pseudocode)
parse
rules <- parse(file="rulefile.R")
v <- new_validator()
for (r in rules){

if (is_validating(r)){
v <- v + r

}
}

eval
out <- new_validation()
for (r in v){

out <- out + eval(r, data)
}

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

Why R?
R has the ‘reflexive’ property
head(cars, 3)

speed dist
1 4 2
2 4 10
3 7 4
r <- expression(dist > speed)
eval(r, head(cars,3))
[1] FALSE TRUE FALSE
r[[1]][[1]] == ">"
[1] TRUE

Anatomy of validate (pseudocode)
parse
rules <- parse(file="rulefile.R")
v <- new_validator()
for (r in rules){

if (is_validating(r)){
v <- v + r

}
}

eval
out <- new_validation()
for (r in v){

out <- out + eval(r, data)
}

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

More information

Data Validation

Data Validation
Mark P.J. van der Loo and Edwin de Jonge

Keywords: data quality, data cleaning

Abstract: Datavalidation is theactivitywhereonedecideswhetheror not aparticular data
set is fit for a given purpose. Formalizing the requirements that drive this decision process
allows for unambiguous communication of the requirements, automation of the decision
process, and opens up ways to maintain and investigate the decision process itself. The
purpose of this article is to formalize the definition of data validation and to demonstrate
some of the properties that can be derived from this definition. In particular, it is shown
how a formal view of the concept permits a classification of data quality requirements,
allowing them to be ordered in increasing levels of complexity. Some subtleties arising
from combining possibly many such requirements are pointed out as well.

Informally, data validation is the activity where one decides whether or not a particular data set is fit for a
given purpose. The decision is based on testing observed data against prior expectations that a plausible
data set is assumed to satisfy. Examples of prior expectations range widely.They include natural limits on
variables (weight cannot be negative), restrictions on combinations of multiple variables (a man cannot be
pregnant), combinations of multiple entities (a mother cannot be younger than her child), and combina-
tions of multiple data sources (import value of country A from country B must equal the export value of
country B to country A). Besides the strict logical constraints mentioned in the examples, there are often
softer constraints based on human experience. For example, one may not expect a certain economic sec-
tor to grow more than 5% in a quarter. Here, the 5% limit does not represent a physical impossibility but
rather a limit based on past experience. Since one must decide in the end whether a data set is usable for
its intended purpose, we treat such assessments on equal footing.
The purpose of this article is to formalize the definition of data validation and to demonstrate some

of the properties that can be derived from this definition. In particular, it is shown how a formal view
of the concept permits a classification of data validation rules (assertions), allowing them to be ordered
in increasing levels of “complexity.” Here, the term “complexity” refers to the amount of different types
of information necessary to evaluate a validation rule. A formal definition also permits development of
tools for automated validation and automated reasoning about data validation[1–3]. Finally, some subtleties
arising from combining validation rules are pointed out.

Statistics Netherlands, The Hague, The Netherlands

Wiley StatsRef: Statistics Reference Online, © 2014–2020 John Wiley & Sons, Ltd
This article is © 2020 John Wiley & Sons, Ltd.
DOI: 10.1002/9781118445112.stat08255

1

MPJ van der Loo, E de Jonge (2020). Data
Validation. In Wiley StatsRef: Statistics
Reference Online, pages 1-7. American Cancer
Society.

JSS Journal of Statistical Software
March 2021, Volume 97, Issue 10. doi: 10.18637/jss.v097.i10

Data Validation Infrastructure for R

Mark P. J. van der Loo
Statistics Netherlands

Edwin de Jonge
Statistics Netherlands

Abstract

Checking data quality against domain knowledge is a common activity that pervades
statistical analysis from raw data to output. The R package validate facilitates this
task by capturing and applying expert knowledge in the form of validation rules: logical
restrictions on variables, records, or data sets that should be satisfied before they are
considered valid input for further analysis. In the validate package, validation rules are
objects of computation that can be manipulated, investigated, and confronted with data
or versions of a data set. The results of a confrontation are then available for further
investigation, summarization or visualization. Validation rules can also be endowed with
metadata and documentation and they may be stored or retrieved from external sources
such as text files or tabular formats. This data validation infrastructure thus allows for
systematic, user-defined definition of data quality requirements that can be reused for
various versions of a data set or by data correction algorithms that are parameterized by
validation rules.

Keywords: data checking, data quality, data cleaning, R.

1. Introduction
Checking whether data satisfy assumptions based on domain knowledge pervades data ana-
lyses. Whether it is raw data, cleaned up data, or output of a statistical calculation, data
analysts have to scrutinize data sets at every stage to ensure that they can be used for re-
porting or further computation. We refer to this procedure of investigating the quality of a
data set and deciding whether it is fit for purpose as a “data validation” procedure.
Many things can go wrong while creating, gathering, or processing data. Accordingly there
are many types of checks that can be performed. One usually distinguishes between technical
checks that are related to data structure and data type, and checks that are related to the
topics described by the data. Examples of technical checks include testing whether an “age”
variable is numeric, whether all necessary variables are present, or whether the identifying

MPJ van der Loo, E de Jonge (2021). Data
Validation Infrastructure for R. Journal of
Statistical Software 1–22 97

UNITED NATIONS ECONOMIC COMMISSION FOR EUROPE

CONFERENCE OF EUROPEAN STATISTICIANS

Expert meeting on Statistical Data Editing

3-7 October 2022, (virtual)

Rule Management
Mark van der Loo, Edwin de Jonge, Olav ten Bosch (Statistics Netherlands, The Netherlands)

mpj.vanderloo@cbs.nl

I. INTRODUCTION

1. An important aspect in the modernisation of statistical production systems is the idea that
subject matter knowledge should be separated as much as possible from technical (IT) knowledge. This
is apparent in the Common Statistical Production Architecture [ModernStats, 2015] which promotes a
separation between the description of business functions and implementation detail. It also promotes
a modular architecure where building a production system in principle amounts to assembling a set of
prebuilt modules for different business functions and parameterizing them with business logic for the
system at hand.

2. In practice these considerations lead to rule-driven data processing systems. In the area of
data editing this is nothing new. At least since the seminal paper of Fellegi and Holt [1976] on error
localisation, statistical offices have worked with rule sets to express subject matter knowledge. The
idea of rule-based processing is also applied in the area to conditional, domain-specific correction
rules Pannekoek et al. [2013], to make domain knowledge explicit and to make production processes
reproducible and transparent. Other recent developments include the development of the Validation
and Transformation Language [SDMX, 2015] and the development of data validation and rule-based
data cleaning engines based in R and Python [van der Loo and de Jonge, 2021b,a, Bantilan, 2020].

3. The advent of rule-based production systems, as well as the ongoing integration of production
systems accross institutes naturally leads to the issue of rule management. A need arises to manage and
maintain rule sets that drive production processes. If done properly, rule management systems offer
great advantages to statistical organisations. They facilitate reproducibility of production, exchange
and reuse of formalized domain knowledge, and offer the possibility of comparing rule sets accross
production systems.

4. The idea of rule management systems is currently developed in several contexts. For exam-
ple, Eurostat is building a repository for the Exchange of data validation rules within the European
Statistical System. Within Statistics Netherlands, two programmes for renewing social and economic
statistics aim to create modular and rule-based production systems, which calls for rule management
systems.

5. This paper contributes to the current discussion by starting with the definition of a few user
stories, that express what a user might expect from a repository. Next, we try to formalize the
discussion by formalizing the concept of a rules and rule sets. We find that the central object of rule
management is the concept of a rule sequence: and ordered list of rules. Next, we define a basic set

M.P.J. van der Loo, E. de Jonge, K.O. ten Bosch
(2022). Rule Management. UNECE Expert
Meeting on Statistical Data Editing.

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

Modularity

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

Why Modularity is Difficult

1. Perspectives on Modules

2. Modularity ≠ Composability

a b c
f g

g◦f

Ideal Modules
Are easy to understand and use (app-like); composable; implement a single piece of
methodology; are controllable from the outside (rules/parameters).

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

Why Modularity is Difficult

1. Perspectives on Modules 2. Modularity ≠ Composability

a b c
f g

g◦f

Ideal Modules
Are easy to understand and use (app-like); composable; implement a single piece of
methodology; are controllable from the outside (rules/parameters).

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

Why Modularity is Difficult

1. Perspectives on Modules 2. Modularity ≠ Composability

a b c
f g

g◦f

Ideal Modules
Are easy to understand and use (app-like); composable; implement a single piece of
methodology; are controllable from the outside (rules/parameters).

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

Examples of modules for data processing

replace_errors

X Y

-1 3

 9 5

validate

modify

modifier

. . . impute_lr

validator

X 2

Y 8

What

How

validate validatedcmodify
errorlocate

Note
▶ Composing from left to right
▶ Modules can be independently added or removed

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

Examples of modules for data processing

replace_errors

X Y

-1 3

 9 5

validate

modify

modifier

. . . impute_lr

validator

X 2

Y 8

What

How

validate validatedcmodify
errorlocate

Note
▶ Composing from left to right
▶ Modules can be independently added or removed

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

A module for process monitoring (logging)?

Process

X Y

-1 3

 9 5

Rules

Process

Rules

. . . Process

Rules

X 2

Y 8

What

How

Log Log Log

Question
▶ How to implement a module that can be independently added for logging?

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

A module for process monitoring (logging)?

Process

X Y

-1 3

 9 5

Rules

Process

Rules

. . . Process

Rules

X 2

Y 8

What

How

Log Log Log

Question
▶ How to implement a module that can be independently added for logging?

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

It can be done: lumberjack

DEMO

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

How does that work? 1: Adding a second data stream

Concept
A sequence of R expressions 𝑒𝑖; 𝑖 = 1, 2, … 𝑛, executed in order can be considered as
one long composed expression

𝑒𝑛 ∘ 𝑒𝑛−1 ∘ ⋯ ∘ 𝑒1.
The idea is to replace this boring composition operator with an interesting one.

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

How does that work? 1: Adding a second data stream
source() (schematically)
expressions <- parse("myfile.R")
for (e in expressions){

eval(e)
}

run_file() (schematically)
expressions <- parse("myfile.R")
n <- 0
for (e in expressions){

eval(e)
n <- n + 1

}
printf("Counted %d expressions\n",n)

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

How does that work? 1: Adding a second data stream
source() (schematically)
expressions <- parse("myfile.R")
for (e in expressions){

eval(e)
}

run_file() (schematically)
expressions <- parse("myfile.R")
n <- 0
for (e in expressions){

eval(e)
n <- n + 1

}
printf("Counted %d expressions\n",n)

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

How does that work? 2: communication from user stream to log stream

myfile.R
x <- runif(1)
start_counting()
y <- 20
z <- x + y

Concept
A special expression (like start_counting()) changes the compostion operator.

𝑒𝑛∘𝑒𝑛−1∘ ⋯ ∘ek ∘ ⋯ ∘ 𝑒1.
▶ Analyze Abstract Syntax Tree? if(x >= 0.5) start_counting()
▶ Smuggle information from the special expression to the file runner.

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

How does that work? 2: communication from user stream to log stream

myfile.R
x <- runif(1)
start_counting()
y <- 20
z <- x + y

Concept
A special expression (like start_counting()) changes the compostion operator.

𝑒𝑛∘𝑒𝑛−1∘ ⋯ ∘ek ∘ ⋯ ∘ 𝑒1.

▶ Analyze Abstract Syntax Tree? if(x >= 0.5) start_counting()
▶ Smuggle information from the special expression to the file runner.

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

How does that work? 2: communication from user stream to log stream

myfile.R
x <- runif(1)
start_counting()
y <- 20
z <- x + y

Concept
A special expression (like start_counting()) changes the compostion operator.

𝑒𝑛∘𝑒𝑛−1∘ ⋯ ∘ek ∘ ⋯ ∘ 𝑒1.
▶ Analyze Abstract Syntax Tree? if(x >= 0.5) start_counting()
▶ Smuggle information from the special expression to the file runner.

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

Creating a smuggler with higher order functions
make_smuggler <- function(fun, env){

function(...){
env$result <<- fun(...) # smuggle the result of 'fun' to 'env'
env$result

}
}

store <- new.env()
mymean <- make_smuggler(mean, store)

mymean(1:3) # works just like 'mean'

[1] 2
store$result # but the result is also copied into 'store'

[1] 2

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

Creating a smuggler with higher order functions
make_smuggler <- function(fun, env){

function(...){
env$result <<- fun(...) # smuggle the result of 'fun' to 'env'
env$result

}
}

store <- new.env()
mymean <- make_smuggler(mean, store)

mymean(1:3) # works just like 'mean'

[1] 2
store$result # but the result is also copied into 'store'

[1] 2

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

Using a smuggler in run_file()
start_counting <- function() return(TRUE)

run_file <- function(rfile){
runtime <- new.env()
store <- new.env()

runtime$start_counting <- smuggler(start_counting, store)

expressions <- parse(rfile)
n <- 0
for (e in expressions){

eval(e, runtime)
if (isTRUE(store$result)) n <- n + 1

}
printf("Executed %d expressions", n)

}

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

Design of lumberjack

Approach
1. Theory:

▶ custom file runner
▶ local side effect (smuggler)
▶ local masking

2. Implement core into R
3. Design user interface

▶ start/stop/pause/dump
▶ Logger objects and interface

Result
1. Easy to get started/learn
2. Extensible with new loggers

▶ Integration with validate
3. Composable (1 LoC)
4. Clean separation between runtime

environment and logging environment.

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

Design of lumberjack

Approach
1. Theory:

▶ custom file runner
▶ local side effect (smuggler)
▶ local masking

2. Implement core into R
3. Design user interface

▶ start/stop/pause/dump
▶ Logger objects and interface

Result
1. Easy to get started/learn
2. Extensible with new loggers

▶ Integration with validate
3. Composable (1 LoC)
4. Clean separation between runtime

environment and logging environment.

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

Contrasting approaches: most logging packages

Approach
1. Define specific logging use cases

▶ fixed output format/type
▶ fixed output target/type
▶ logging level

2. Implement as R functions

Result
1. Easy to get started/learn
2. Need to insert code in several places
3. Usually not extensible w/new loggers
4. Logging takes place in runtime

environment
NB:

5. Same approach used in tinytest

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

Contrasting approaches: most logging packages

Approach
1. Define specific logging use cases

▶ fixed output format/type
▶ fixed output target/type
▶ logging level

2. Implement as R functions

Result
1. Easy to get started/learn
2. Need to insert code in several places
3. Usually not extensible w/new loggers
4. Logging takes place in runtime

environment
NB:

5. Same approach used in tinytest

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

Modularity: Why R?

All modules
▶ R package system

‘cross-cutting’ modules, like logging
▶ Higher-order functions (func. lang.)
▶ Reflexive: parse/eval and masking
▶ Environment as smugglers’ path

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

More information

B. Fong, B Milewski, D. Spivak (2020)
Programming with categories; online lectures
http://brendanfong.com/programmingcats.html

B. Milewski (2019) Category theory for
programmers. Blurb.com.

CONTRIBUTED RESEARCH ARTICLES 42

A Method for Deriving Information from
Running R Code
by Mark P.J. van der Loo

Abstract It is often useful to tap information from a running R script. Obvious use cases include
monitoring the consumption of resources (time, memory) and logging. Perhaps less obvious cases
include tracking changes in R objects or collecting the output of unit tests. In this paper, we demonstrate
an approach that abstracts the collection and processing of such secondary information from the
running R script. Our approach is based on a combination of three elements. The first element is
to build a customized way to evaluate code. The second is labeled local masking and it involves
temporarily masking a user-facing function so an alternative version of it is called. The third element
we label local side effect. This refers to the fact that the masking function exports information to the
secondary information flow without altering a global state. The result is a method for building systems
in pure R that lets users create and control secondary flows of information with minimal impact on
their workflow and no global side effects.

Introduction

The R language provides a convenient language to read, manipulate, and write data in the form of
scripts. As with any other scripted language, an R script gives a description of data manipulation
activities, one after the other, when read from top to bottom. Alternatively, we can think of an R
script as a one-dimensional visualization of data flowing from one processing step to the next, where
intermediate variables or pipe operators carry data from one treatment to the next.

We run into limitations of this one-dimensional view when we want to produce data flows that
are somehow ‘orthogonal’ to the flow of the data being treated. For example, we may wish to follow
the state of a variable while a script is being executed, report on progress (logging), or keep track
of resource consumption. Indeed, the sequential (one-dimensional) nature of a script forces one to
introduce extra expressions between the data processing code.

As an example, consider a code fragment where the variable x is manipulated.

x[x > threshold] <- threshold
x[is.na(x)] <- median(x, na.rm=TRUE)

In the first statement, every value above a certain threshold is replaced with a fixed value, and next,
missing values are replaced with the median of the completed cases. It is interesting to know how an
aggregate of interest, say the mean of x, evolves as it gets processed. The instinctive way to do this is
to edit the code by adding statements to the script that collect the desired information.

meanx <- mean(x, na.rm=TRUE)
x[x > threshold] <- threshold
meanx <- c(meanx, mean(x, na.rm=TRUE))
x[is.na(x)] <- median(x, na.rm=TRUE)
meanx <- c(meanx, mean(x, na.rm=TRUE))

This solution clutters the script by inserting expressions that are not necessary for its main purpose.
Moreover, the tracking statements are repetitive, which validates some form of abstraction.

A more general picture of what we would like to achieve is given in Figure 1. The ‘primary data
flow’ is developed by a user as a script. In the previous example, this concerns processing x. When the
script runs, some kind of logging information, which we label the ‘secondary data flow’ is derived
implicitly by an abstraction layer.

Creating an abstraction layer means that concerns between primary and secondary data flows are
separated as much as possible. In particular, we want to prevent the abstraction layer from inspecting
or altering the user code that describes the primary data flow. Furthermore, we would like the user
to have some control over the secondary flow from within the script, for example, to start, stop, or
parameterize the secondary flow. This should be done with minimum editing of the original user
code, and it should not rely on global side effects. This means that neither the user nor the abstraction
layer for the secondary data flow should have to manipulate or read global variables, options, or other
environmental settings to convey information from one flow to the other. Finally, we want to treat
the availability of a secondary data flow as a normal situation. This means we wish to avoid using
signaling conditions (e.g., warnings or errors) to convey information between the flows unless there is
an actual exceptional condition such as an error.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

Mark P.J. van der Loo (2021). A Method for
Deriving Information from Running R Code. The
R Journal 13 42–52

JSS Journal of Statistical Software
May 2021, Volume 98, Issue 1. doi: 10.18637/jss.v098.i01

Monitoring Data in R with the lumberjack Package

Mark P. J. van der Loo
Statistics Netherlands

Abstract

Monitoring data while it is processed and transformed can yield detailed insight into
the dynamics of a (running) production system. The lumberjack package is a lightweight
package allowing users to follow how an R object is transformed as it is manipulated by
R code. The package abstracts all logging code from the user, who only needs to specify
which objects are logged and what information should be logged. A few default loggers
are included with the package but the package is extensible through user-defined logger
objects.

Keywords: data quality, process monitoring, logging, debugging, R.

1. Introduction

It is common practice to monitor a data analysis process while it is running, especially in
production environments where analyses are run repeatedly on different but structurally com-
parable data sets. Following a running procedure is usually done with some form of logging
system, where the running process updates a log that can be tracked by users as it proceeds.
One can distinguish two types of monitoring. On the one hand there is process logging, or just
logging for short. Here, the running system notifies users of progress and significant events,
usually by writing short time-stamped messages to a file (where “file” can be a flat text file,
database, screen or any other device accepting such input). The aim of these messages is
to signal whether procedures have concluded successfully, and if they have not, to report
what went wrong. Such information is highly valuable in post-mortem investigations, for
example when a production script has crashed. On the other hand there is tracing where the
state of variables is followed over the course of the process. Tracing is usually applied at the
development stage as a debugging tool, often using an interactive interface tool to run the
code line by line while inspecting the state of variables. One of the purposes of this paper
is to demonstrate that targeted forms of automated tracing can be useful at the production
stage as well.

MPJ van der Loo (2021). Monitoring data in R
with the lumberjack package. Journal of
Statistical Software 98 1–11

http://brendanfong.com/programmingcats.html
https://www.blurb.com/b/9621951-category-theory-for-programmers-new-edition-hardco

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

User interface

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

Example: simputation

Example data
staff turnover other.rev total.rev staff.costs

1 75 NA NA 1130 NA
2 9 1607 NA 1607 131
3 NA 6886 -33 6919 324

Issues
▶ Need for fall-through scenario for imputation
▶ Multiple variables to impute
▶ Multiple models

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

Example: simputation

Example data
staff turnover other.rev total.rev staff.costs

1 75 NA NA 1130 NA
2 9 1607 NA 1607 131
3 NA 6886 -33 6919 324

Issues
▶ Need for fall-through scenario for imputation
▶ Multiple variables to impute
▶ Multiple models

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

Imputation in R

Specialized packages
▶ 100+ available (VIM, mice, Amelia, mi, …)
▶ Interfaces vary (a lot)

DIY with model/predict
m <- lm(Y ~ X, data = mydata)
ina <- is.na(mydata$Y)
mydata[ina, "Y"] <- predict(m, newdata = mydata[ina,])
YMMV, be cause how 'predict' works, depends on the model

Result
▶ Lots of ‘boilerplate’ code needed, covering many cases
▶ Hard to experiment and test

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

Idea of the simputation package

Provide
▶ a uniform interface,
▶ with consistent behaviour,
▶ across commonly used methodologies

To facilitate
▶ experimentation
▶ configuration for production

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

The simputation interface

impute_<model>(data
, <imputed vars> ~ <predictor vars>
, [options])

Example: linear model imputation
impute_lm(ret, other.rev ~ turnover) |> head(3)

staff turnover other.rev total.rev staff.costs
1 75 NA NA 1130 NA
2 9 1607 5427.113 1607 131
3 NA 6886 -33.000 6919 324

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

The simputation interface

impute_<model>(data
, <imputed vars> ~ <predictor vars>
, [options])

Example: linear model imputation
impute_lm(ret, other.rev ~ turnover) |> head(3)

staff turnover other.rev total.rev staff.costs
1 75 NA NA 1130 NA
2 9 1607 5427.113 1607 131
3 NA 6886 -33.000 6919 324

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

Fall-through scenario by chaining imputations

ret |>
impute_lm(other.rev ~ turnover + staff) |>
impute_lm(other.rev ~ staff) |>
head(3)

staff turnover other.rev total.rev staff.costs
1 75 NA 13914.261 1130 NA
2 9 1607 6089.698 1607 131
3 NA 6886 -33.000 6919 324

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

Other features

▶ Impute multiple variables with the same model
▶ Groupwise imputation
▶ Multivariate methods (e.g. missForest, EM)

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

Approach

Approach
1. Essentials of specification
2. Map to R features (formula-data)
3. Build on top of existing packages

Result
1. Easy to learn and use :-)
2. Fall-through scenarios supported :-)
3. Not driven by external rules :-/
4. Hard to extend :-(

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

Approach

Approach
1. Essentials of specification
2. Map to R features (formula-data)
3. Build on top of existing packages

Result
1. Easy to learn and use :-)
2. Fall-through scenarios supported :-)
3. Not driven by external rules :-/
4. Hard to extend :-(

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

Why R?

▶ Availabitlity of many existing imputation methods
▶ Formula-data interface for model specification
▶ Packaging model, and CRAN

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

Summary

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

In my experience

Peeling off a practical issue until a math problem remains
▶ Is essential to achieve true modularity and composability;
▶ Truly separates concerns between user needs (domain knowledge) and

programming.
▶ Yields extensible solutions;
▶ Creates interfaces that are almost automatically user-friendly

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

What makes R specifically suited for modernization?

High level of abstraction
Higher order functions, reflexivity facilitate true modularity and composability.

Functional language and reflexivity
Allows for quick development of domain-specific languages embedded into R

Abstractions for model-building
Formula-data interface facilitate user-friendly interfaces.

Packaging system and CRAN
Nothing beats CRAN in terms of consistency accross dependencies, quality checks and
standardization.

The R community (you!)

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

What makes R specifically suited for modernization?

High level of abstraction
Higher order functions, reflexivity facilitate true modularity and composability.

Functional language and reflexivity
Allows for quick development of domain-specific languages embedded into R

Abstractions for model-building
Formula-data interface facilitate user-friendly interfaces.

Packaging system and CRAN
Nothing beats CRAN in terms of consistency accross dependencies, quality checks and
standardization.

The R community (you!)

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

What makes R specifically suited for modernization?

High level of abstraction
Higher order functions, reflexivity facilitate true modularity and composability.

Functional language and reflexivity
Allows for quick development of domain-specific languages embedded into R

Abstractions for model-building
Formula-data interface facilitate user-friendly interfaces.

Packaging system and CRAN
Nothing beats CRAN in terms of consistency accross dependencies, quality checks and
standardization.

The R community (you!)

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

What makes R specifically suited for modernization?

High level of abstraction
Higher order functions, reflexivity facilitate true modularity and composability.

Functional language and reflexivity
Allows for quick development of domain-specific languages embedded into R

Abstractions for model-building
Formula-data interface facilitate user-friendly interfaces.

Packaging system and CRAN
Nothing beats CRAN in terms of consistency accross dependencies, quality checks and
standardization.

The R community (you!)

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

What makes R specifically suited for modernization?

High level of abstraction
Higher order functions, reflexivity facilitate true modularity and composability.

Functional language and reflexivity
Allows for quick development of domain-specific languages embedded into R

Abstractions for model-building
Formula-data interface facilitate user-friendly interfaces.

Packaging system and CRAN
Nothing beats CRAN in terms of consistency accross dependencies, quality checks and
standardization.

The R community (you!)

markvanderloo.eu uRos2023 BucharestModernization of statistical production with R

Thank you

markvanderloo.eu/publications.html

	Modernization
	Rule-based data processing
	Modularity
	User interface
	Summary

