






# Robust and fast data synthesis with the synthesizer package.

Use of R in Official Statistics 2025 #uRos2025

Mark van der Loo<sup>1,2</sup>, Marije Sluijskes<sup>2</sup>, Mishca Jacobs<sup>2</sup> and Maria Anthoulaki<sup>2</sup>
<sup>1</sup>Statistics Netherlands (CBS), <sup>2</sup>Leiden University

UROS 2025 BUCHAREST

12-11-2025 | www.markvanderloo.eu

### Interface

```
synthesize()
                   # synthesize a vecor or data.frame
make synthesizer() # create a function that samples
                     from the synthetic distribution
synthesize(rho=r) # lower rank correlation between
                   # original and synthetic data to r
                   # (possibly per variable)
synthesize(na.rm=TRUE)
                        # Remove missings before
                        # synthesizing and get a complete
                        # dataset
```



### The synthesizer algorithm

### For each variable:

- 1. Sample n values from empirical distribution.
- 2. Reorder so that the rank of the sample matches the rank of the original *n* values.



### The synthesizer algorithm

- Integer, categorical data: resample from observations.
- Numeric data: linear intepolation of formal ECDF

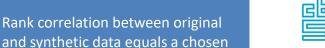
### For each variable:

- 1. Sample n values from empirical distribution.
- 2. Reorder so that the rank of the sample matches the rank of the original *n* values.



Rank correlation between original and synthetic data equals 1.

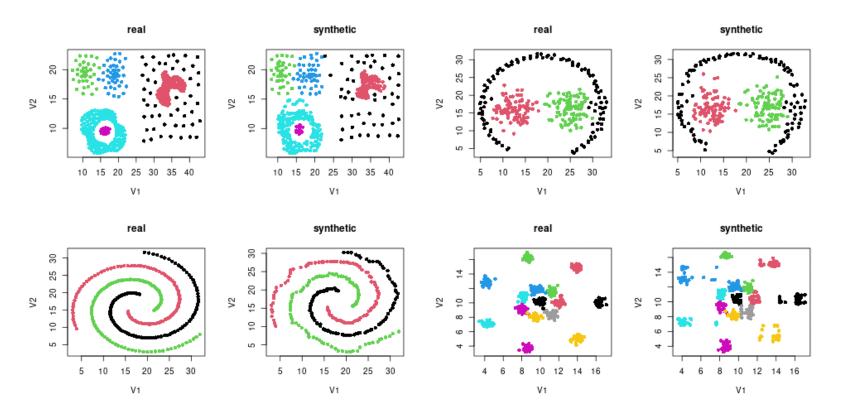
### The synthesizer algorithm: privacy


Integer, categorical data: resample from observations.

value.

Numeric data: linear intepolation of formal ECDF

### For each variable:


- 1. Sample n values from empirical distribution.
- Reorder with a chosen level of randomisation so that the rank of the sample matches the rank of the original n values to a chosen level.

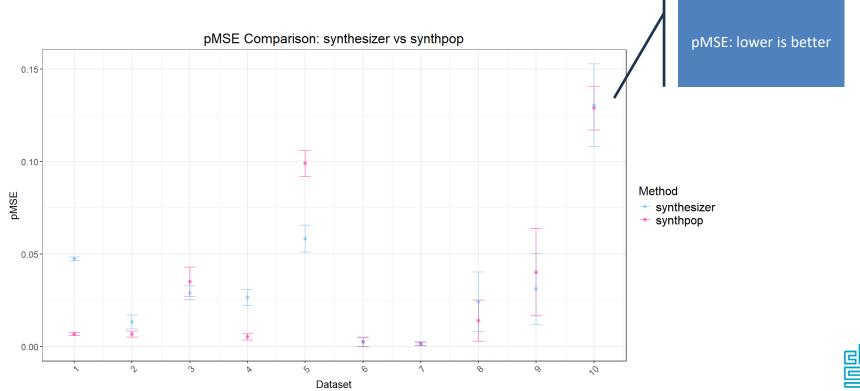






### Synthesizer reproduces complex relations

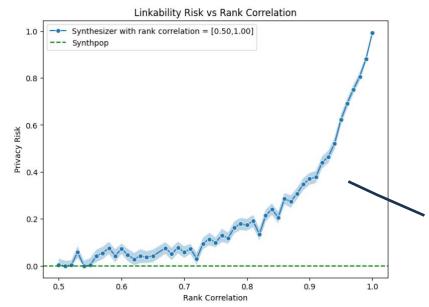





# Synthesizer works in many cases

- ✓ Univariate and multivariate data
- ✓ Numeric, integer, categorical or mixed data
- ✓ Missing data
- ☑ Mixed distributions (e.g. inflated zeros)
- ✓ Univariate and multivariate time series
- **区** Logical restrictions / structural zero's
- Relations between records



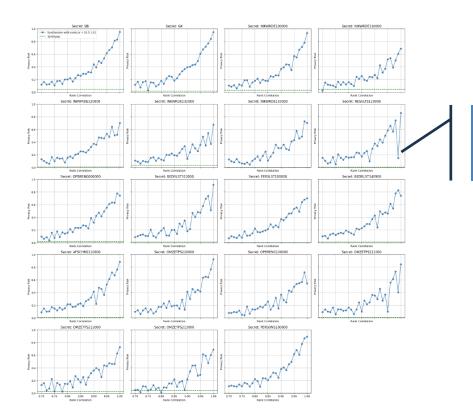

# **Experiments on SBS data**



### Synthesizer has controllable SDC

| Dataset                     | Risk    | 95% Confidence Interval |  |
|-----------------------------|---------|-------------------------|--|
| synthesizer $(rankcor = 1)$ | 0.23894 | (0.21212, 0.26577)      |  |
| synthesizer (rankcor = 0.9) | 0.09144 | (0.07223, 0.11064)      |  |
| synthpop                    | 0.16790 | (0.14388, 0.19192)      |  |

Singling-out risk
Probability that, given a
unique pattern in synthetic
data, the pattern can be
found in the original data




#### Linkability risk

Probability that records from two data sets without overlapping variables can be linked through synthetic data that overlaps with both.



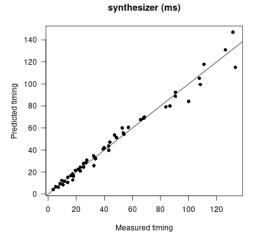
### Synthesizer has controllable SDC



#### Inference risk:

Risk of disclosure by prediction based on models trained on synthetic data

Riscs measured using the Anonymeter framework in Python[1].





[1] Giomi, Matteo, et al. A unified framework for quantifying privacy risk in synthetic data (2022). Proceedings of Privacy Enhancing Technologies Symposium.

Image credit: M. Anthoulaki (2025) Evaluating the Privacy Riscs of data Generated by the 11 Synthesizer Method. MSc thesis, Leiden University

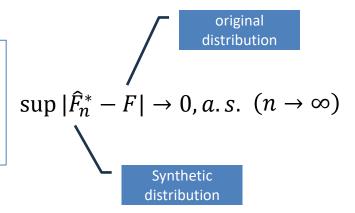
# Synthesizer is fast

| Method                | Time complexity (theory) |
|-----------------------|--------------------------|
| synthesizer           | $O(pn\log(n))$           |
| synthpop (using CART) | $O(p^2n\log(n))$         |





#### **Experiment:**


- 1k-10k records and 5-25 variables (5x)
- Linear model for median timings.
- Adjusted R<sup>2</sup>=0.98 (both models)



### Synthesizer is grounded in theory

#### For each variable:

- 1. Sample *n* values from empirical distribution.
- Reorder so that the rank of the sample matches the rank of the original n values.





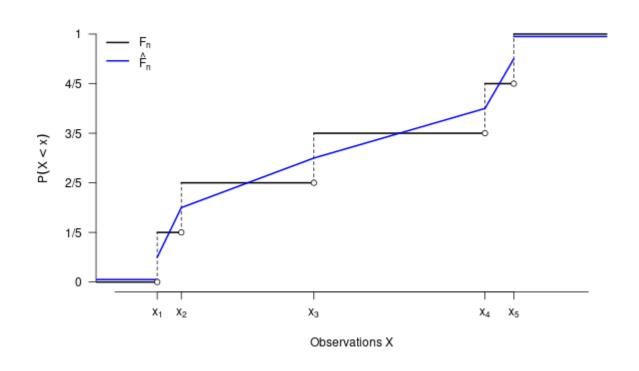
### **Summary**

- synthesizer offers an easy-to-understand synthetic data method where the data is the model.
- The method is fast, retains high utility, and has customizable privacy—utility tradeoff.
- Because of it's simplicity we can formally establish some asymptotic properties





www.markvanderloo.eu




### Glad you asked!

```
Algorithm 1: Synthesize a dataset
   Input: An n \times p dataset \mathbf{X} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_p\}
   Output: An n \times p synthetic dataset X^*
1 X^* = \{\};
2 for i \in \{1, 2, \dots p\} do
    Create an approximate CDF \hat{F}_{n,j};
4 | \mathbf{x}_{i}^{*} \leftarrow [x_{1}, x_{2}, \dots, x_{n}] \sim \hat{F}_{n, j}; // sample n values from \hat{F}_{n, i}
\mathbf{x}_{i}^{*} \leftarrow \operatorname{sort}(\mathbf{x}_{i}^{*})[\operatorname{rank}(\mathbf{x}_{j})];
                                                // match order of \mathbf{x}_i
6 | \mathbf{X}^* = \mathbf{X}^* \cup \{\mathbf{x}_i^*\};
7 end
```



## Wow, I did not expect that question!





## I totally did not expect this question



