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Automated and manual data editing: a view on

process design and methodology

Jeroen Pannekoek, Sander Scholtus, and Mark van der Loo

Data editing is arguably one of the most resource-intensive processes at NSIs.

Forced by ever increasing budget pressure, NSIs keep searching for more e�cient

forms of data editing. E�ciency gains can be obtained by selective editing, that

is limiting the manual editing to in�uential errors, and by automating the editing

process as much as possible. In our view, an optimal mix of these two strategies

should be aimed for. In this paper we present a decomposition of the overall

editing process in a number of di�erent tasks and give an up-to-date overview

of all the possibilities of automatic editing in terms of these tasks. In designing

an editing process, this decomposition enables one to decide which tasks can be

done automatically and for which tasks (additional) manual editing is required.

Such decisions can be made a priori, based on the speci�c nature of the task, or

by empirical evaluation, which is illustrated by examples. The decomposition

in tasks, or statistical functions, also naturally leads to reuseable components,

resulting in e�ciency gains in process design.

This paper has been submitted for publication in a special issue of the Journal

of O�cial Statistics on selective editing.

Keywords: automatic editing; selective editing; edit rules; process design; pro-

cess evaluation
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1 Introduction

The quality of raw data available to National Statistical Institutes (NSIs) is

rarely su�cient to allow of the immediate production of reliable statistics. As

a consequence, NSIs often spend considerable e�ort to improve the quality of

micro-data before further processing can take place.

Statistical data editing encompasses all activities related to the detection and

correction of inconsistencies in micro-data, including the imputation of missing

values. Data editing, or at least the correction part of data editing, has tradition-

ally been performed manually by data editing sta� with subject-speci�c expert

knowledge. The manual follow-up of a large number of detected inconsistencies

is, however, very time-consuming and therefore expensive and it decreases the

timeliness of publications. Therefore, several approaches have been developed

to limit this very resource-consuming manual editing.

One approach is selective editing (Latouche and Berthelot, 1992). This is an

editing strategy in which manual editing is limited or prioritised to those er-

rors where this editing has a substantial e�ect on estimates of the principal

parameters of interest. Provided that there is an e�ective way of determin-

ing the in�uential errors, this strategy can be successful because it has been

well-established (see the review by Granquist and Kovar (1997)) that for many

economic surveys only a minority of the records contains in�uential errors that

need to be edited; the remaining errors can be left in without substantial e�ect

on the principal outputs.

An alternative route to reducing manual editing is to perform the editing auto-

matically. Automatic editing is not a single method but consists of a collection

of formalised actions that each perform a speci�c task in the overall editing

process. Some well-known tasks that are performed in automatic editing are

the evaluation of edit rules to detect inconsistencies in the data, the localisa-

tion of �elds that cause these inconsistencies, the detection and correction of

systematic errors such as the well-known thousand error, and the imputation of

missing or incorrect values. Once implemented, automatic editing is fast, uses

hardly any manual intervention and is reproducible. For reasons of e�ciency,

it should therefore be preferred to manual editing even if the latter is con�ned

to selected records. However, not all data editing functions can be performed

automatically with su�cient quality of the result. Selective manual editing is

then a necessary addition.

Both selective editing and rule-based automated data editing are well-established

techniques that have been in use for several decades now. Forced by ever de-

creasing budgets as well as the pressure to minimise administrative burden, NSIs

need to keep searching for more e�cient ways to produce statistics, including
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more e�cient forms of data editing.

The relation between manual and automatic editing as it emerges from the

classical literature on selective editing is that all important amendments should

be done manually and that the role of automatic editing is con�ned to the less

in�uential errors: its purpose is mainly to ensure internal consistency of the

records so as to avoid inconsistencies at all levels of aggregation. In this view

the quality of automatic editing has no bearing on the decision to edit a record

manually or automatically. E�ciency gains are realised by the selection process

only. The point of view taken in this paper is that for reasons of e�ciency,

manual editing should be con�ned to the data that are in�uential and cannot

be treated automatically with su�cient quality. In this view, the quality of

automatic editing is important in making the decision to edit manually or not

and improvements in automatic editing will lead to e�ciency gains.

This paper gives an overview of the current state of the art in e�cient editing

of establishment data. Using numerical results from two example statistics, it is

shown that with the current methods, selective editing can be minimised while

data quality is retained. We identify methodological research directions which

in our view have potential for yielding further e�ciency gains.

Besides making the data editing process more e�cient, there is a need for in-

creasing the cost-e�ectiveness of designing and implementing data editing sys-

tems. In this paper we propose a hierarchical decomposition of the data editing

process into six di�erent task types, called statistical functions. This view of

the overall process builds on previous work of Camstra and Renssen (2011) and

Pannekoek and Zhang (2012) by adding a taxonomy of editing functions and

de�ning the minimal input and output requirements of each of these functions.

Identifying the in- and output parameters of these abstract functions allows

one to move towards a modern approach to process design, based on reusable

components that connect in a plug-and-play manner.

The remainder of this paper is structured as follows. Section 2 discusses some

basic aspects of error detection in manual and automatic editing. First we con-

sider the di�erent kinds of errors that can arise and di�erentiate between errors

for which automatic treatment is a possibility and those for which manual treat-

ment is required. Then we discuss the edit rules that are extensively used in

data editing, in particular with respect to business surveys. In section 3 an

overview is given of both well-known and more recently developed automatic

error detection and correction methods. Section 4 is concerned with a decompo-

sition of the overall data editing process in data editing functions based on the

action and purpose of these functions. In section 5 the application of a sequence

of di�erent editing functions is illustrated using two real data examples. This

section also gives references to the freely available R packages that are used for
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Figure 1. Bethlehem (2009) taxonomy of survey errors. Errors in grey boxes are

commonly solved by manual data editing while automated techniques are usually

more suited for error causes indicated in dotted boxes.

these illustrations. Finally, in section 6 we summarise some conclusions.

2 Error detection in manual and automated editing

2.1 Sources of errors in survey data

In analyses of survey errors it is customary to decompose the total error into

more or less independent components which may be treated or solved sepa-

rately. Well-known decompositions include those by Groves (1989) and Bethle-

hem (2009). Here, we use Bethlehem's taxonomy of survey errors since it allows

us to identify sources of error with common data editing strategies.

Bethlehem (2009) uses the scheme shown in Figure 1 to distinguish between

sources of error in a statistical statement based on surveys. The total error is

decomposed into sampling and nonsampling error. The sampling error is further

decomposed into selection and estimation error. Selection error consists of dif-

ferences between the theoretical and realised inclusion probabilities of sampling

units, while estimation error consists of the usual variance and bias introduced

by the estimation method. Non-sampling errors can be split into observational

and non-observational errors. Observational errors are composed of overrepre-

sentation of elements in the population register (overcoverage), measurement

errors (item non-response, completion errors, etc.) and processing errors at the

NSI (e.g. data entry errors). Non-observational errors are caused by omission of

elements from the population register (undercoverage) and unit non-response.

Traditionally, automated data editing methods have more or less focused on

errors happening at the measurement or processing stage. That is, many au-

tomated data editing methods focus on the observed variables rather than the

identifying or classifying variables already available in the population register.

For example, in a strati�ed hot-deck imputation scheme, the values of stratify-
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ing variables are assumed correct to begin with. In contrast, data editing sta�

often do not make such assumptions and may frequently reclassify units.

Since automated data editing methods are always based on mathematical mod-

eling they usually assume that some kind of structured auxiliary information is

available. In many cases historic records, auxiliary register variables or totals

from related statistics can be used to estimate values for erroneous or missing

�elds in a survey data set. In contrast, data editing sta� may use unstruc-

tured auxiliary information to edit records. Such information may, for example,

include written �nancial reports or information from websites, as well as recon-

tacts. These two di�erences between manual and automated data editing enable

data editing sta� to correct for errors not caused at the moment of measurement.

In 2010, thirteen of Statistics Netherlands' data editing employees working on

the short term business survey were informally interviewed on commonly found

errors and data editing practices. Besides a number of commonly found mea-

surement errors (reporting of net instead of gross turnover, reporting of value

of goods instead of invoices, etc.) many causes of error that were mentioned

are non-observational or sampling errors in Bethlehem's taxonomy. Examples

include misclassi�cations such as retailers being registered as wholesalers, pop-

ulation e�ects such as bankruptcies, splits and mergers, and di�erences between

legal units (chambre of commerce), tax units (of the tax o�ce) and economic

units (of Statistics Netherlands). Such errors are detected and/or solved by

looking at auxiliary information such as �gures and articles from sector organi-

sations and (�nancial) newspapers, a website dedicated to registering bankrupt-

cies, publicly available information on wages and retirement funds in a sector

and so on. Subject-matter experts also use (often unstructured) domain knowl-

edge on branche-speci�c transient or seasonal e�ects to detect errors. Examples

of such e�ects include weather conditions (energy and construction), holidays

(food industry, printers, etc.) and special events (tourist sector).

For the various measurement errors mentioned by the interviewees, conven-

tional automatic data editing methods can in principle be applied. For non-

observational errors like population errors and misclassi�cations, the error de-

tection and correction process is based on fuzzier types of information and there-

fore harder to automate. At the moment, we are not aware of methods that can

exploit such information for data editing purposes automatically.

2.2 Edit rules for automatic veri�cation

Prior knowledge on the values of single variables and combinations of variables

can be formulated as a set of edit rules (or edits for short), which specify or

constrain the admissible values. For single variables such edits are range checks;
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for most variables in business surveys these amount to a simple non-negativity

requirement such as:

e1 : Number of employees ≥ 0

e2 : Turnover > 0

Edits involving multiple variables describe the admissible combinations of values

of these variables in addition to their separate range restrictions. For numeric

business data, many of these edits take the form of linear equalities (balance

edits) and inequalities. Some simpli�ed examples of such edit rules are:

e3 : Result = Total revenues − Total costs

e4 : Total costs = Purchasing costs + Personnel costs +Other costs

e5 : Turnover = Turnover main activity + Turnover other activities

e6 : Employee costs < 100× Number of employees

The inequality and equality edits e1�e5 are examples of fatal or hard edits: they

must hold true for a correct record. This class of edits is opposed to the so-

called soft or query edits whose violation points to highly unlikely or anomalous

(combinations of) values that are suspect to be in error although this is not a

logical necessity. The edit e6 could be interpreted as a soft edit.

More generally, an inequality edit k can be expressed as
∑J

j=1 akjxj ≤ bk,

with the xj denoting the variables, the akj coe�cients, bk a constant and the

summation running over all variables. In e1 and e2, bk = 0 and the akj are zero

for all variables except one, for which akj is −1. Linear equalities such as e3, e4

and e5 can similarly be expressed as
∑J

j=1 akjxj = bk.

Notice that these edits are connected by certain common variables, which is true

for many of the edits used in business statistics and has consequences for error

localisation and adjustment for consistency. In such situations it is convenient

to re-express the edits as a system of K linear equations and inequalities, in

matrix notation:

Ex� b, (1)

with E the K × J edit matrix with elements akj , x a J -vector containing the

variables and b a K-vector with elements bk. The symbol � should here be

interpreted as a vector of operators (with values <, = or ≤) appropriate for the
corresponding (in)equalities.

Each of the edit rules can be veri�ed for each record. If we haveN records andK

edits, all the failure statuses can be summarised in a binary N×K failed-edits

matrix F , corresponding to all the record-by-edit combinations. The failure

statuses can be the input to an error localisation function that selects vari-

ables, from those involved in failed edits, with values that are to be considered
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erroneous and need to be changed in order to resolve the edit failures (see Sec-

tion 3.3).

The number of edit rules greatly varies between statistical domains. The struc-

tural business statistics (SBS) are an example with a large number of edit rules.

An SBS questionnaire can be divided into sections. It contains, for instance,

sections on employees, revenues, costs and results. In each of these sections

a total is broken down in a number of components. Components of the total

number of employees can be part-time and full-time employees and components

of total revenues may be subdivided in turnover and other operating revenues.

The total costs can have as components: purchasing costs, depreciations, per-

sonnel costs and other costs. The personnel costs can be seen as a subtotal

since it can again be broken down in subcomponents: wages, training and other

personnel costs. Each of these breakdowns of a (sub)total corresponds to a

(nested) balance edit. SBS questionnaires also contain a pro�t and loss section

where the revenues are balanced against the costs to obtain the results (pro�t or

loss), which leads to the edit e3. This last edit connects the edits from the costs

section with the edits from the revenues section. Soft edits for the SBS form are

often speci�ed as bounds on ratios. For instance, ratios between a component

and the associated total, between the number of employees and the personnel

costs, between purchasing costs and turnover, etc.

3 Methods for automatic detection and amendment of missing

or erroneous values

The overall editing process can be seen as a sequence of statistical functions

applied to a data set. Such functions, for example selecting records for manual

editing, may be implemented as an automated or a manual subprocess. In this

section we summarise a number of data editing methods that can be performed

automatically.

Since these methods often detect or correct di�erent types of errors, they will

usually be applied one after another so as to catch as many errors as possible.

The detailed exposition of the statistical methodology for each of these functions

is beyond our scope but below we summarise the type of methods that could

be used and/or give some simple examples. More detailed descriptions can be

found in De Waal et al. (2011) and the references cited there.

3.1 Correction of generic systematic errors

From a pragmatic point of view, a systematic error is an error for which a plau-

sible cause can be detected and knowledge of the underlying error mechanism
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enables a satisfactory treatment in an unambiguous deterministic way. De Waal

et al. (2012) distinguish between generic systematic errors and subject-related

systematic errors. A generic systematic error is an error that occurs with essen-

tially the same cause for a variety of variables in a variety of surveys or registers.

Subject-related systematic errors on the other hand occur for speci�c variables,

often in speci�c surveys or registers.

3.1.1 Unit of measurement error

A well-known generic systematic error is the so-called unit of measurement error

which is the error of, for example, reporting �nancial amounts in Euros instead

of the requested thousands of Euros. Unit of measurement errors are often

detected by a simple ratio criterion that compares the raw value xraw with a

reference value xref . Such a rule can be expressed as

xraw
xref

> t, (2)

with t some threshold value. The reference value can be an approximation to

the variable x that is una�ected by a unit of measurement error, such as an

edited value for the same unit from a previous round of the same survey or a

current or previous stratum median of x. The detection of unit of measurement

errors may be improved by dividing the �nancial variables by the number of

employees (e.g. Costs or Revenues per employee) to eliminate the variation

in these variables due to the size of the unit. If a thousand error is detected,

the a�ected values are divided by thousand. See e.g. Di Zio et al. (2005) and

Al Hamad et al. (2008) for further discussion and more advanced methods for

detecting unit of measurement errors.

Thousand errors are often made in a number of �nancial variables simultane-

ously, yielding what is known as a uniform thousand error in these variables.

Thousand errors will not violate balance edits if they are uniform in all variables

involved; therefore, they cannot be detected by such edits. Incidental thousand

errors may be detected by balance edits when the error is made in one or more

of the components or their total but not in all these variables.

3.1.2 Simple typing errors, sign errors and rounding errors

Some inconsistencies are caused by simple typing errors. Recently, methods have

been developed to reliably detect and correct these types of errors (Scholtus,

2009; Van der Loo et al., 2011). The algorithm correcting for typing errors uses

the edit rules to generate candidate solutions and accepts them if the di�erence

with the original value is not larger than a pre-speci�ed value. The di�erence
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is measured with the restricted Damerau-Levenshtein distance (Damerau, 1964;

Levenshtein, 1966). This distance measure counts the (possibly weighted) num-

ber of deletions, insertions, alterations and transpositions necessary to turn one

character string into another (the restriction entails that substrings, once edited,

cannot be edited again).

The typo-correction can also correct simple sign errors. More complex sign

errors, such as those caused by swapping Cost and Turnover in a questionnaire

where the rule Pro�t = Turnover − Cost must hold, can be solved by a binary

tree algorithm that tests whether (combinations of) swapping options decrease

the number of violated edits (Scholtus, 2011).

Rounding errors cause edit violations by amounts of a few units of measurement

at most. It is therefore of less importance which variables are adapted. The

scapegoat algorithm of Scholtus (2011) uses a randomisation procedure to adapt

one or more variables by a small amount such that the number of equality

violations is decreased.

3.2 Domain-speci�c correction rules

In contrast to generic systematic errors, subject-related or domain-speci�c sys-

tematic errors occur for speci�c variables, often in speci�c surveys or regis-

ters. Problems with understanding de�nitions are often a cause of such errors.

Restaurants, for instance, often incorrectly classify their main revenues as rev-

enues from trade (because they sell food) rather than revenues from services as

it should be. As another example, reporting net rather than gross turnover may

occur frequently in some domains.

Direct if-then rules can easily be used to correct such errors. These rules are of

the form

if condition then action,

where condition is a logical expression that is true if an error is detected and

action is the amendment function that assigns new values to one or more vari-

ables.

Apart from being used for correction of subject-speci�c systematic errors, such

rules are also used for selection and imputation. For selection of records for

manual editing, the action consists of assigning TRUE to an indicator variable

for manual treatment. For instance, if for large units crucial variables such as

Employment or Turnover are missing or inconsistent, the unit may be selected

for manual treatment. For the selection of �elds to be changed the action con-

sists of changing some �elds to NA (which stands for Not Available or missing).
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For instance, if the costs per employee are outside the admissible range, the

number of employees (in FTE) may be selected as erroneous rather then the

employee costs because it is known that the �nancial variables are reported

more accurately. For imputation the condition speci�es which missing value

can be imputed by the rule and under what conditions. For instance

ifWages for temp. employees = NA and Nr. of temp. employees = 0

thenWages for temporary employees ≡ 0,

We use the symbol ≡ when we need to distinguish assignment from mathemat-

ical or logical equivalence (=). Even the evaluation of an edit rule can be seen

as a rule in this if-then form. The condition is in that case the edit rule itself

and the action is the assignment of a TRUE�FALSE status to a column of the

matrix F .

These rules are called direct correction/selection/imputation rules because the

implementation of the condition and the action follows trivially from the rule

itself. In contrast, the generic systematic errors discussed above such as typos

and rounding errors are also based on rules, because they use the edit rules,

but in those cases the implementation cannot be formulated in a single simple

if-then rule but requires a more sophisticated algorithm. The same is true for

Fellegi-Holt-based error localisation and model-based imputation with estimated

parameters, to be discussed below.

3.3 Error localisation

Error localisation is the process of pointing out the �eld(s) containing erroneous

values in a record. Here, we assume that all �elds should be �lled, so an empty

�eld (NA) is also assumed erroneous. If there are N records with J variables,

the result of an error localisation process can be represented as a boolean N ×J

matrix L, of which the elements Lij are TRUE where a �eld is deemed erroneous

(or when it is empty) and FALSE otherwise.

Automated error localisation can be implemented using direct rules, as men-

tioned in section 3.2. In such a case a rule of the form

if condition then Lij ≡ TRUE, (3)

can be applied. It should be noted that this method takes no account of edit

restrictions, and does not guarantee that a record can be made to satify all the

edits by altering the content of �elds pointed out with this method; Boskovitz

(2008) calls this the error correction guarantee.

Error localisation becomes more involved when one demands that 1) it must be

possible to impute �elds consistently with the edit rules and 2) the (weighted)
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number of �elds to alter or impute must be minimised. These demands are

referred to as the principle of Fellegi and Holt (1976). Identifying 1 and 0 with

the boolean values TRUE and FALSE respectively, the localisation problem for

each row l of L can be denoted mathematically as

l ≡ argmin
u∈{0,1}J

wTu (4)

under the condition that the set of (in)equality restrictions Eq. (1) has a solution

for the xj with lj = 1, given the original values of the xj with lj = 0. The vector

l points out which variables are deemed wrong (1) and which are considered

correct (0). In addition, w is a non-negative weight vector assigning weights

to each of the J variables. These weights are referred to as reliability weights,

because they can be used to express the degree of trust one has in each original

value xj . Note that increasing wj makes it less likely that xj will be chosen as

a candidate for amendment, as feasible solutions with lower weights are more

likely to be available.

A special case occurs when only univariate (range) edits are considered. That

is, when every edit contains but a single variable. Denote by C the K × J

boolean matrix that indicates which variables (columns) occur in which edits

(rows), and denote by X the N ×J numerical data matrix. In this special case,

the matrix C is either diagonal (when all variables are bounded from above or

below), or contains at most 2J nonzero elements (when each variable is bounded

by a range). The matrix L can then be computed as

L ≡ (FC > 0) ∨ (X = NA). (5)

Here, F is the N ×K failed-edits matrix de�ned in Section 2.2, and the logical

and comparison operators (< and =) on the right-hand-side should be evaluated

elementwise. The symbol ∨ indicates the elementwise or operation.

Several algorithms have been developed for error localisation under intercon-

nected multivariate linear constraints. See De Waal et al. (2011) and the ref-

erences therein for a concise overview of available algorithms. Regardless of

the algorithm used, the special case of Eq. (5) can be applied to the subset of

univariate edits prior to one of the more complex algorithms, to reduce compu-

tational complexity. The branch-and-bound algorithm of De Waal and Quere

(2003) and approaches based on a reformulation of the error localisation prob-

lem as a mixed-integer problem (MIP) have recently been implemented as a

package for the R statistical environment by De Jonge and Van der Loo (2011).

3.4 Imputation of missing or discarded values

Imputation is the estimation or derivation of values that are missing due to

non-response or discarded for being erroneous (as indicated by L in the previous
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section). Below we discuss deductive and model-based imputation methods.

3.4.1 Deductive imputation of missing or discarded values

In some cases the values for the empty �elds can be derived uniquely from edit

rules by mathematical or logical derivation. For example, when one value in a

balance edit is missing, the only possible imputed value that will satisfy the bal-

ance edit can easily be obtained from the observed values. For the interrelated

systems of linear edits that are typical for the SBS it is generally not obvious if

some of the missing values are determined uniquely by the edit rules. By �lling

in the observed values from a record in the edit rules, a system of (in)equalities

is obtained with the missing values as unknowns. Speci�cally, if x is partitioned

as x = (xobs,xmis) where xobs denotes the sub-vector of x containing the ob-

served values and xmis the sub-vector with missing values and E is partioned

conformably as E = (Eobs,Emis), then we have from Ex� b,

Emisxmis � b−Eobsxobs, (6)

where the right hand side is calculated from the observed values and xmis con-

tains the unknown missing values. The problem now is to determine which, if

any, of these unknowns can be solved from this system and consequently de-

ductively imputed. There exist simple algorithms that can �nd the values of all

uniquely determined values for the unknowns in this system (De Waal et al.,

2011).

3.4.2 Model-based imputation

Deductive imputation will in general only succeed for part of the missing values.

For the remaining missings, models are used to predict the values of the missing

items and these predictions are used as imputations. Here the term �model� is

used in a broad sense, covering not only parametric statistical models but also

non-parametric approaches such as nearest-neighbour imputation.

For business surveys with almost exclusively numerical variables, the predomi-

nant methods are based on linear regression models including, as special cases,

(strati�ed) ratio and mean imputation (cf. De Waal et al. (2011, ch. 7)). Im-

portant for the e�ciency of the application of regression imputation is that

models for each of the variables that need imputation are speci�ed in advance

or selected automatically without the need for time-consuming model selection

procedures by analysts at the time of data editing. When available, a historical

value is often a good predictor for the current value.

An alternative, if all variables are continuous, is to use a multivariate regression

approach where all variables that are observed in a record are used as predictors
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for each of the missing values. Thus, for each record, the variables are parti-

tioned in two sets; the variables observed in record i and the variables missing

in that record. The subvectors of x corresponding to these two sets will be

denoted by xobs(i) and xmis(i) and the value of xobs(i) in record i by xi.obs. If

it is assumed that x is multivariate normally distributed, the conditional mean

of the missing variables, given the values of the observed variables in record i,

µi.mis say, can be expressed as

µi.mis = µmis(i) +Bmis(i),obs(i)(xi.obs − µobs(i)), (7)

with µmis(i) and µobs(i) the unconditional means of xmis(i) and xobs(i) and

Bmis(i),obs(i) an nmis(i) × nobs(i) matrix with rows containing the coe�cients

for the nmis(i) regressions of each of the missing variables on the observed ones.

Estimates of the conditional means µi.mis are the regression imputations and

can be applied for continuous variables for which the linear model is a good

approximation, without necessarily assuming normality.

An estimator of the coe�cient matrix Bmis(i),obs(i) can be obtained from an

estimator of the covariance matrix Σ of x by using

Bmis(i),obs(i) = Σ−obs(i).obs(i)Σobs(i).mis(i) (8)

with Σobs(i).obs(i) the submatrix of Σ containing the (co)variances of the vari-

ables observed in record i and Σobs(i).mis(i) the submatrix containing the co-

variances among the variables observed in record i and the variables missing

in this record. Note that once we have estimated the covariance matrix Σ and

mean vector µ for all variables, we can perform all regressions needed to impute

each of the records, with their di�erent missing data patterns, by extracting the

appropriate submatrices and subvectors. In (8) we used a generalised inverse,

denoted by �−�, instead of a regular inverse because the covariance matrix in-

volved can be singular due to linear dependencies of the variables implied by

equality constraints.

A nice property of this multivariate regression approach with all observed vari-

ables as predictors is that linear dependencies in the data used to estimate Σ

will be transferred to each imputed record. Therefore, all equality edits will be

satis�ed by the imputed data provided that Σ is estimated on data consistent

with these edits (cf. De Waal et al. (2011, ch. 9)). A possible data set to be

used for estimation is the set of complete and consistent records from the cur-

rent data. If there are not (yet) enough of such records, cleaned data from a

previous round of the survey provide an alternative. If the current data are used

it is possible to also include the records with missing values in the estimation

of µ and Σ by applying an EM algorithm (see Little and Rubin (2002)).
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3.5 Adjustment of imputed values for consistency

Imputed values will often violate the edit rules since most imputation methods

do not take the edit rules into account. The multivariate regression approach

(7) takes equalities into account but not inequalities. More involved imputation

methods have been developed that can take all edit rules into account (De

Waal et al., 2011, ch. 9), but for many unsupervised routine applications such

models become too complex. The inconsistency problem can then more easily

be solved by the introduction of an adjustment step in which adjustments are

made to the imputed values, such that the record satis�es all the edits and the

adjustments are as small as possible. This is an optimisation problem: minimise

the adjustments under the constraint that all edits are satis�ed. When the

weighted least squares criterion is chosen to measure the discrepancy between

the unadjusted and the adjusted values, this problem can be formalised as

xadj = argmin
x∈Rn

(x− xunadj)
TW (x− xunadj)

subject to Exadj � b, (9)

where it is understood that only the imputed values may be changed; the other

elements of xadj remain equal to the corresponding elements of xunadj . The

matrixW is a positive diagonal matrix with weights that determine the amount

of adjustment for each of the variables; adjustments to variables with large

weights have more impact on the criterion value and therefore these variables

are adjusted less than variables with small weights. For instance, the choice

W = diag(xunadj)
−1 leads to minimisation of the squared discrepancies relative

to the size of the unadjusted values; see Pannekoek and Zhang (2011) for more

details.

3.6 Selection of units for further treatment

Automatic treatment cannot be expected to �nd and repair all important errors

and consequently some form of additional manual treatment will be needed. The

selection of units for manual treatment is the essential part of selective editing.

The goal of this approach is to identify units for which it can be expected

that manual treatment has a signi�cant e�ect on estimates of totals and other

parameters of interest and to limit manual review to those units.

An important tool in this selection process is the score function (Latouche and

Berthelot, 1992; Lawrence and McDavitt, 1994; Lawrence and McKenzie, 2000;

Hedlin, 2003) that assigns values to records that measure the expected e�ect of
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editing. The record score is usually built up from local scores for a number of

important variables. Each local score measures the signi�cance for the variable

of concern. Often it can be decomposed into a risk component that measures the

size or likelihood of a potential error, and an in�uence component that measures

the contribution or impact of that value on the estimated target parameter. The

local score for variable j in record i can then be expressed as sij = Fij × Rij

with Fij the in�uence component and Rij the risk component for variable j in

record i. See, e.g., Di Zio (2013) for an example of a local score function with

risk and in�uence components. A record- or unit-level score is a function of

local scores, i.e. Si = f(si1, . . . , siJ). The measure of risk is commonly based

on the deviation of a variable from a reference value, often a historical value or

stratum median. Large deviations from the reference value indicate a possible

erroneous value and, if it is indeed an error, a large correction.

Since the local score and the record score re�ect the occurrence and size of

outlying values with respect to the reference values, the score can be seen as a

quantitative measure for an aspect of the quality of a record. In this sense it is a

veri�cation function (cf. Section 4). Its purpose, however, is selection and this

can be accomplished by comparing the scores with a predetermined threshold

value and selecting the units with score values higher than the threshold for

manual editing. Alternatively, the units can be ordered with respect to their

score values and manual editing can proceed according to this ordering, until

some stopping criterion is met.

In practice we also see other, simpler, selection functions being applied. The

following are some examples.

� A function that identi�es units that are `crucial' because they dominate

the totals in their branche; selected units will be reviewed manually,

whether they contain suspect values or not (selection on in�uence only).

� A function that selects in�uential units for which automatic imputation

is not considered an accurate treatment because some main variables are

missing or obviously incorrect; selected units will be re-contacted.

� A function that selects non-in�uential units for which automatic imputa-

tion is not considered an accurate treatment because some main variables

are missing or obviously incorrect; selected units will be treated as unit

non-response, for instance by weighting techniques in the estimation phase

after editing is completed.

� A function that selects units for which an automatic action has failed. For

instance if the error localisation took too much time and the process was
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stopped without having obtained a solution. Selected units can be treated

as unit non-response or reviewed manually, depending on their in�uence.

For some recent theoretical developments in the �eld of selective editing, see

Albuéz et al. (2013) and Di Zio (2013).

4 The data editing process

Much of the complexity in the design of a data editing system is caused not by

mathematical di�culties relating to the underlying methods, but by combin-

ing the implementation of those methods into a working process or supporting

system.

A typical data editing process consists of a mixture of domain-speci�c error

correction and localisation actions, a number of automated editing steps, and

a possibility for manual intervention on selected records. Each part of such a

process has its own input, output, and control parameters that in�uence how it

can be combined with other steps to build up a full process.

To design, compare and evaluate data editing processes it is useful to have a

common terminology for the types of activities that are instrumental in realising

the end result of a data editing process. In line with Camstra and Renssen

(2011) we call these types of activities statistical functions. In section 4.1 below

we propose a decomposition of the overall data editing process in a taxonomy

of statistical functions that are characterised by the kind of task they perform

and the kind of output they produce. The e�ects of these statistical functions

can be evaluated by inspecting their characteristic output.

A statistical function describes what type of action is performed but leaves

unspeci�ed how it is performed. To implement a statistical function for a speci�c

data editing application (discussed in section 4.2), a method for that function

must be speci�ed and con�gured. It should be noted that the same statistical

function can, and often will, be implemented by several methods even within

the same application. For instance the statistical function (or type of task or

kind of activity) record selection can be implemented by both a score function

methodology and by graphical macro-editing.

An actual implementation of a data editing process can now be seen as a col-

lection of implementations of statistical functions. The overall process can be

structured by dividing it into subprocesses or process steps, that each implement

one or several (but related) statistical functions executed by speci�ed methods.

Process steps are application-speci�c but the statistical functions that they im-

plement are much more general and are used to categorise the kinds of activities
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Figure 2. A taxonomy of data editing functions. Each data editing function has

its own minimal input-output pro�le which determine how they may be combined

in a data editing process (Table 1).

implemented by the process steps. The granularity in which a process is divided

into process steps is, to an extent, arbitrary. For example, one may talk about a

statistical process as the complete process from gathering input data to publish-

ing results, and divide that process into process steps using the GSBPM model

(UNECE Secretariat, 2009). In that model, data editing occurs as a single step.

For our purposes however, it is natural to de�ne a more �ne-grained approach.

The choice of methods to be used in the process steps and the order in which

the process steps are executed will depend on the properties and requirements

of the speci�c application at hand but some general considerations regarding

these choices are discussed in section 4.3.

4.1 A taxonomy of data editing functions

Just like process steps, statistical functions may be separated on several levels

of granularity. In Figure 2 we decompose data editing hierarchically, in three

levels, into ultimately six low-level statistical functions.

At the �rst level of the decomposition we distinguish between functions that

leave the input data intact (compute indicator) and those that alter the input

data (amend values). At the second level, functions are classi�ed according to

their purpose. We distinguish between indicators that are used to verify the

data against quality requirements (veri�cation) and indicators that are used to

separate a record or dataset into subsets (selection). Veri�cation functions are

separated further into functions that verify hard (mandatory) edit rules (rule

checking) and functions that compute softer quality indicators (compute scores).

The selection function allows for di�erent records (record selection) or di�erent
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�elds in a record (�eld selection) to be treated di�erently. There is no separation

based on purpose for the amendment function; amendment functions are only

separated into functions that alter observed values (amend observations) and

functions that alter unit properties (amend unit properties) such as classifying

(auxiliary) variables. This may be interpreted as a decomposition based on a

record-wise or �eld-wise action.

It should be recognised that there are many other dimensions along which one

could separate the types of tasks performed in a data editing process. For ex-

ample, Pannekoek and Zhang (2012) distinguish between methods that can be

performed on a per-record basis (e.g. Fellegi-Holt error localisation, imputation

with historical values) and actions that need batch processing (e.g. error locali-

sation by macro-editing, imputation with current means). The point of view we

take here is that we wish the taxonomy to abstract from implementation issues.

The lowest-level statistical functions de�ned here allow one to de�ne quality in-

dicators for each function, in terms of their e�ect on data, performance, expense,

etc., which are independent of the chosen statistical method or implementation

thereof. Below, the six lowest-level data editing functions are discussed in some

detail.

Rule checking . This veri�cation function checks, record by record, whether the

value combinations in a record are in the allowed region of the space of possible

records. Such a task may be done automatically, when the rules and possible

reference data are available in a machine-readable format, or manually, by expert

review.

Compute scores. The score function computes a quality indicator of a record

or �eld. Examples of score functions are counting the number of missings in a

record, determining whether a �eld contains an outlier or counting the number

of edits violated by a �eld. The output of score functions is often input for

automated selection functions. Score functions are rarely computed manually.

Field selection is used to point out �elds in records that need a di�erent treat-

ment than the remaining �elds, for example because they are deemed erroneous.

Selection may be done manually, by expert review, or automatically. Examples

of automated methods include detection of unit of measurement errors, and

Fellegi and Holt's method for error localisation.

Record selection aims to select records from a data set that need separate pro-

cessing. This can be done automatically, for example by comparing the value

of a score function to a threshold value. Manual record selection is commonly

based on macro-editing methods, such as sorting on a score function, reviewing

aggregates, and graphical analyses.

Amend observations. This function aims to improve data quality by altering
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Figure 3. A model to specify the operationalisation of statistical functions (Cam-

stra and Renssen, 2011). Besides statistical data, the values of operational vari-

ables include auxiliary information and control parameters at the input side and

process metadata and quality indicators on the output side.

observed values or by �lling in missing values. Many automated imputation

and adjustment methods exist, some of which have been discussed in Section 3.

The amendment function can also be performed manually, for example by data

editing sta� who may recontact respondents.

Amend unit properties. This function does not alter the value of observed vari-

ables but amends auxiliary properties relating to the observed unit. In business

statistics, this function entails tasks like changing erroneous NACE codes and is

often performed manually. Another commonly performed task falling into this

category is the adjustment of estimation weights for representative outliers.

Pannekoek and Zhang (2012) and Camstra and Renssen (2011) also proposed

a decomposition of statistical functions related to data editing. The former

distinguish between the veri�cation, selection and amendment functions, while

the latter also distinguish calculation of score functions. The taxonomy in the

current paper further completes the picture by assigning data editing functions

a place in a hierarchy based on clearly de�ned separating principles (amend or

not at the �rst level and select or verify at the second level).

4.2 Speci�cation of data editing functions

As shown above, each function in the taxonomy of Figure 2 can be performed

with several methodologies, and each methodology may be implemented in sev-

eral ways. The operationalisation of a function for a speci�c data editing process

can therefore be speci�ed by documenting the input, output and the method.

Indeed, Camstra and Renssen (2011) propose such a speci�cation model for gen-

eral statistical functions, shown in Figure 3. In principle, a data editing process

is completely determined once the order of process steps and their speci�cations

are known.

As an example, consider a simple record selection function comparing a score

value to a threshold value. The input consists of a score value s and a threshold
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value t, so the data model for the input is R2. The method speci�cation is the

algorithm

IF ( s > t ) return(TRUE) ELSE return(FALSE),

so the output data model is {FALSE,TRUE}.

The above algorithm is a very simple example of how a selection function may

be implemented. In our taxonomy, the work of Di Zio (2013) and Albuéz et al.

(2013) presented elsewhere in this issue also falls into the category of record

selection functions, even though the methods described there are much more

advanced. The most important commonality between record selection functions

is the type of output they produce, namely a decision for each record whether

it should be selected or not. Regardless of the method used, such an output

can be represented as a boolean vector with the number of records in the data

set as dimension. On the input side, any e�ective record selection function will

at least need the data to be able to return a reasonable decision vector. At

this level of abstraction, even wildly di�erent methods may be compared to

support decisions about which method to use in which process step. Indeed,

the taxonomy described in this paper has been designed with such a purpose in

mind.

Just like for the record selection function, it is possible to identify a minimal

set of input and output parameters for each data editing function, regardless

of the method that implements it. Table 1 denotes this set of minimal in-

and output parameters for every low-level statistical function of the taxonomy.

Any extra in- or output parameter used in a particular process will be related

to the speci�c method chosen to implement a function. The taxonomy and

input-output model presented above make no assumptions about the type of

data or type of rule sets. For example, the model leaves undecided whether

each data record has the same number of variables, or whether the data have

a hierarchical structure (such as used in household surveys). Also, there are

no assumptions about the type of rules used; they may be numerical, linear,

nonlinear, categorical, of mixed type or otherwise speci�ed.

4.3 Combining process steps

An overall editing process can be seen as a combination of process steps each

consisting of one or more statistical functions executed by speci�ed methods.

The choice of methods that implement these functions as well as the speci�ca-

tions of parameters or models for these methods will di�er between applications

and depend on the data to be edited, availability of auxiliary data, output and
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Table 1. The minimal input and output for data editing functions. The

input data consist of N items, where the number of data attributes may

vary per item. Each data attribute is subject to K rules.

Function input output

Rule checking data, rules N ×K edit failure indicator

Compute scores data N -vector of score values

Field selection data, rules �eld selection indicator

Record selection data N -vector of subset indicators

Amend

observations

data data

Amend

unit properties

unit properties unit properties

timeliness requirements, etc. Moreover, the order in which process steps will

be carried out is also application dependent. However, some general consider-

ations about the composition of process steps in terms of statistical functions,

the order of application and the choice of methods will be outlined below.

A single process step can combine several functions that will always be ap-

plied together. For instance, correction of generic and domain-speci�c system-

atic errors typically involve the implementation of a �eld selection function by

a method that detects a speci�c systematic error and an amend observations

function to replace the erroneous value with a corrected one. Since the detec-

tion is always followed directly by the correction action, speci�c for the kind of

error detected, these two functions are combined in a single process step with

data and rules as input and a �eld selection indicator as well as modi�ed data

as output. The indicator re�ects the detection part and the modi�ed data the

amendment part.

Several process steps will often perform the same statistical function but with

di�erent methods. In particular, amend observations refers to a large group of

process steps that each implement a di�erent method to solve a di�erent problem

in (possibly) di�erent data values. An overall process will often include steps

that perform the following amendment tasks: correction of generic and domain-

speci�c systematic errors, deductive imputation, model-based imputation and

adjustment of imputed values for consistency.

Although the ordering of process steps can di�er between applications, there is

a logical ordering for some process steps. For instance, selection for interactive

treatment itself can occur at di�erent stages of the editing process, but it is

evident that for e�ciency reasons such a selection step should always precede

the actual manual amendment of values and, if the selection is performed by
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a score-function methodology, the calculation of scores must precede the selec-

tion step. Also, automatic amendment steps will usually start by exhausting

the possibilities for solving systematic errors and deductive imputation before

approximate solutions by model-based imputation are applied.

Timeliness of the results is an important requirement that in�uences the choice

of methods for the statistical functions. For surveys where the data collection

phase extends over a considerable period of time, it is important that the time-

consuming manual editing starts as soon as possible, that is as soon as the

data are arriving. Selection for manual editing should then be based on a score

function that can be evaluated on a record-by-record basis without the need

to wait until all or a large part of the data are available. On the other hand,

for administrative data or surveys with a short data collection period, selection

for interactive treatment can be done using macro-editing methods that by

de�nition use a large part of the data.

5 Numerical illustrations

5.1 Introduction

In this section, we illustrate the e�ects of applying a sequence of automatic

and manual editing functions using two real data sets. Both data sets come

from regular production processes at Statistics Netherlands. The �rst example

concerns data on Dutch child care institutions (Section 5.2); the second example

concerns SBS data on Dutch wholesalers (Section 5.3).

For both examples, we have identi�ed the following possible process steps that

can be applied during editing.

1. Correction of generic and domain-speci�c systematic errors:

(a) Correction rules for falsely negative values

(b) Correction of uniform thousand errors

(c) Other direct correction rules

(d) Correction of simple typing errors

(e) Correction of sign errors

(f) Correction of rounding errors

2. Automatic error localisation (under the Fellegi-Holt paradigm)

3. Deductive imputation of missing or discarded values

4. Model-based imputation of missing or discarded values
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5. Adjustment of imputed values for consistency

6. Selection for interactive treatment

7. Manual editing (interactive treatment)

The �rst six numbered steps were treated in Section 3 as part of our overview of

automatic editing methods. Step 7 is the only one considered here that requires

real-time human input. The other steps can be run automatically once they have

been set up. As was suggested in Section 4.3, a large number of di�erent editing

processes can be obtained by combining some (not necessarily all) of the above

process steps, possibly in a di�erent order. In general, di�erent choices will have

a di�erent impact on the quality of the output data and on the e�ciency of the

editing process. This will be illustrated in the examples below.

Some brief remarks on the implementation now follow. All the numerical ex-

periments reported below have been performed in the R statistical environment.

De�nition and checking of edit rules can be done with the editrules package of

De Jonge and Van der Loo (2012). Typing, sign, and rounding errors can be

corrected, while taking edit rules into account, with the deducorrect package of

Van der Loo et al. (2011). The deducorrect package also o�ers functionality to

reproducibly apply user-de�ned domain-speci�c actions, as discussed in Section

3.2. The term �reproducibly� here means that every action performed on the

records is automatically logged, while the user can con�gure the conditional

actions independent from the source code de�ning the data editing process. Er-

ror localisation for numeric, categorical or mixed data can be done with the

editrules package. See De Jonge and Van der Loo (2011) for an introduction.

Deductive imputation methods are again included in the deducorrect package.

See Van der Loo and De Jonge (2011) for a description. For model-based impu-

tation a multivariate regression method is applied, implemented in R. Imputed

values are adapted using the rspa package of Van der Loo (2012). The code

used for selecting records for manual editing and for repairing thousand errors

is not part of any package and has been developed for the purpose of this paper.

5.2 Data on child care institutions

In this illustration we will show the e�ects of a sequence of automatic editing

functions in terms of the amount of errors detected and the number of resulting

amendments to data values. The data used for this example are taken from

a census among institutions for child day care in 2008. Apart from questions

on speci�c activities, the questions and the structure of the questionnaire are

similar to what is typical for structural business statistics. For this illustration

a subset of the census data was used, consisting of 840 records with 45 variables.
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For these variables 40 hard edit rules were speci�ed, of which 11 are equalities,

27 are non-negativity edits and the remaining two are other inequalities. The

edit rules as well as the rules for detecting thousand errors and domain-speci�c

generic errors are subsets of the rules used in production.

To these data we have applied the automatic process steps 1 through 5 listed

in Section 5.1. The results are displayed in Table 2. The second column of this

table shows the number of changed data values at each process step. In the

third column are the numbers of failed edits at each process step, which can be

obtained directly from the failed-edits matrix. Some edits cannot be evaluated

for some records because the edit contains variables with missing values in that

record. The corresponding elements of the failed-edits matrix are then missing

and the number of such missing elements is in the column Not evaluated edits.

The number of missing data values is in the last column.

Table 2. Numbers of values changed, edit violations and missings at each step

of a sequence of automatic editing functions

Process step Changed Violated Not eval. Missings

values edits edits

0. None 0 258 158 124

1a. Rules for false minus signs 9 249 158 124

1b. Thousand errors 17 250 158 124

1c. Other direct rules 43 252 158 124

1d. Simple typing errors 53 187 158 124

1e. Sign errors 0 187 158 124

1f. Rounding errors 102 147 158 124

2. Error localisation 215 0 477 339

3. Deductive imputation 161 0 248 178

4. Model-based imputation 178 109 0 0

5. Adjustment of imputed values 144 0 0 0

The �rst line of Table 2 shows that before automatic editing there are, in the

whole data set, 258 edit violations and 158 edits that cannot be evaluted because

of 124 missing values. As a �rst automatic step, 9 false minus signs are removed

by a simple direct rule for a variable that is not part of any equality edit. Obvi-

ously 9 non-negativity edit failures are resolved by this action. The detection of

uniform thousand errors is applied within the revenues, costs and results section

seperately and 17 such errors are found. However, the number of violated edits

is increased by one. By looking at the di�erence between the failed-edits matrix

before and after the correction for thousand errors, it appears that the newly

failed edit is Total revenues − Total costs = Pre-tax result and that this occurs

because a thousand error was detected in the revenues and pre-tax result, but
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not in the costs. Records with thousand error corrections that break edit rules

should be followed up manually because falsely correcting a thousand error is

bound to have in�uential e�ects on estimates. The next step concerns the ap-

plication of other direct rules which results in 43 corrections. Again, some of

these changes cause edit failures that should be followed up manually, not only

to correct the data but also the see how these direct correction rules can be

modi�ed so that they are consistent with the edit rules.

We now apply the algorithms for resolving simple typing errors, sign errors and

rounding errors discussed in Section 3.1.2. There are 53 typing errors detected

and corrected of which 12 appear to be sign errors. These corrections are very

e�ective in removing errors as the number of violated edit rules is reduced by

65. After the correction of sign errors in step 1a and 1d, the algorithm for

more complex sign errors (step 1e) could not detect any additional sign errors.

Rounding errors (step 1f) are also important since 40 of the edit violations can

be explained by such errors and correcting them with the algorithm mentioned

in Section 3.1.2 prevents that these violations need to be treated by the compu-

tationally intensive error localisation in step 2. Separating the trivial rounding

errors from other, more important, errors also clari�es our picture of the data

quality.

At this stage the possibilities for correction of generic and domain-speci�c sys-

tematic errors are exhausted. The remaining inconsistencies and missing values

are resolved by applying steps 2 through 5. Error localisation (step 2) identi�es

215 values that need to be changed in order to be consistent with all edit rules.

These values are treated as missing in the following process steps. The increase

of missing values also increases the number of not evaluated edits to a great

extent. To impute the missing values, deductive imputation (step 3) is tried

�rst and succeeds in �lling in close to half of the missing values with the unique

values allowed by the edit rules. For the remaining 178 missing values the mul-

tivariate regression method of Section 3.4.2 (step 4) is applied. These imputed

values result again in edit violations. However, contrary to the situation prior to

step 2, the violation of an edit rule is now not caused by a measurement error in

some, probably only a few, of the variables but by the fact that all model-based

imputations are only approximations to the real values. Therefore (step 5) we

adjust the imputed values as little as possible and solve the 109 edit violations

and a complete and consistent data set results.

5.3 Data on Wholesale

For a second illustration, we consider a data set of 323 records from the Dutch

SBS of 2007. The data are on businesses with 10 employed persons or more
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from the sector wholesale in agricultural products and livestock. The survey

contains 93 numerical variables. These should conform to 120 linear edits, of

which 19 are equalities.

In terms of the possible process steps listed in Section 5.1, the editing process

that was actually used in production consisted of steps 1(abc) and 6, followed

by step 7 for the selected records and by steps 2, 4, and 5 for the rest. Selection

for interactive treatment was based on a score function for businesses with less

than 100 employed persons. Businesses with 100 employed persons or more

were always edited manually. In addition, the model-based imputations in step

4 were obtained from a linear regression model with one predictor separately for

each variable. We use the outcome of this production process as a benchmark.

The second column of Table 3 shows the mean values of twelve key variables

in the production-edited data set. The third column shows the corresponding

means for the unedited data (ignoring all missing values). Prior to editing, the

means of all �nancial variables are much too high, which re�ects the presence

of thousand errors in the unedited data. Moreover, while the production-edited

means satisfy basic accounting rules such as Total operating revenues = Net

turnover + Other operating revenues (apart from rounding e�ects), the unedited

means do not.

The above editing process involves a substantial amount of manual editing: the

number of records selected for interactive treatment was 142, or 44% of all

records (representing about 84% of total net turnover in the production-edited

data set). We now look at two di�erent set-ups that involve less manual editing.

The �rst alternative editing process is almost entirely automated. It consists of

the above numbered process steps 1(abcdef) and 2 through 5 (in that order).

Step 7 is included as a fall-back to treat records for which automatic error

localisation fails. The second alternative process is almost the same, but we

add steps 6 and 7 at the end, with a simple selection mechanism that sends all

businesses with 100 employed persons or more to manual editing. Note that both

alternative editing processes contain the deductive correction methods 1(def)

and a deductive imputation step, which were not used in production. These

additional steps are expected to improve the quality of automatic editing.

To compare the outcome of these alternative editing processes to our bench-

mark, we simulated the results in R. In the implementation of the process steps,

we mostly followed the methodology that was originally used in production.

We only made changes to the model-based imputation and adjustment steps.

For model-based imputation, we did not use a separate regression model for

each variable but simultaneous regression with all variables as explained in Sec-

tion 3.4.2. For the adjustment step, linear optimisation was used in production,

but here we used quadratic optimisation as implemented in the rspa package.
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Manual editing was simulated by copying the production-edited values. The

number of manually edited records under the �rst alternative strategy was 4

(about 1% of all records, also representing about 1% of total net turnover). Un-

der the second alternative strategy, this number was 34 (about 11% of records,

but 55% of total net turnover).

The rightmost columns in Table 3 show the means of key variables for both

alternative editing strategies. It is seen that the �rst alternative yields large

di�erences with respect to the benchmark for several variables. Moreover, with

one exception all di�erences are positive. Thus it appears that for this data,

relying completely on automatic editing does not produce an acceptable result.

By contrast, the second alternative yields values that are close to the benchmark

for all variables but one. For nine of the twelve key variables, the relative

di�erence is less than 1%. It is interesting to note that automatic editing appears

to have an adverse e�ect on the quality of the variable Employed persons (FTE).

This may be explained by the fact that the hard edits contain relatively little

information about this variable: it is only involved in two inequality edits,

whereas the other key variables are all involved in at least one equality edit.

The above results suggest that for this data set, some of the manual work

could be replaced by automatic editing without a�ecting the quality of the

main output. However, a more thorough analysis would be required before

we can draw this conclusion. For one thing, we did not take the sampling

design into account. Moreover, other quality indicators are important besides

the unweighted means of key variables. The purpose of this analysis was merely

to illustrate the e�ects of di�erent editing strategies on real-world data.

6 Discussion and conclusions

In this paper we have discussed the relation between automated and manual

(selective) data editing from three di�erent viewpoints. The �rst viewpoint we

take is that of the source of error. As is turns out, data editing sta� spend

considerable time editing data which are not observed survey data. Often,

classifying variables from the business register (e.g. NACE codes) have to be

altered as well. The source of error (overcoverage) is then not a measurement

error of the survey but an error in the population register. The amendments

proposed by editors in such cases are usually based on unstructured information

such as web sites. Also, such amendments often have consequences for other

statistical processes, for example when a centrally maintained variable (such as

the NACE code) must be adapted.

The second viewpoint we take is from the current state of the art in automated

data editing. The image emerging from the discussion and numerical examples
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is that established automated methods tend to perform well for the major-

ity of records, provided that hard edit rules have been de�ned and su�cient

structured auxiliary information is available for the estimation of new values.

Exceptions include mostly records of large businesses; these usually have a more

complex structure than small establishments and data editing sta� often uses

external unstructured information to repair such records. Obviously, automated

methods are better suited for (computationally, mathematically) complex calcu-

lations than data editing sta�. On the other hand, data editing sta� are better

at judging the violation of soft edit rules, often again by using unstructured

auxiliary information.

Thirdly, we discussed the relation between manual and automated data editing

from the point of view of process design. We have decomposed the data editing

process into several types of tasks (statistical functions), which are independent

of how they are implemented: manually or automatically. This allowed us to

separate the tasks which are currently easier to implement manually from those

that may be implemented automatically. Here, we �nd that record selection,

possibly supported by macro-editing tools, as well as judging and amending unit

properties are often performed manually.

Table 4 summarises the above discussion. We may conclude that currently, au-

tomated methods serve very well to edit observed variables in business survey

records of establishments that are not overly complex (large) and are restricted

by hard edit rules. Automated methods are not yet suited for repairing records

related to large, complex companies, records under soft restrictions or perform-

ing amendments based on unstructured data. Those tasks are still mostly per-

formed manually. Of course, manual editing of observed variables of simple

(small) units based on structured information is always possible; our point is

that here the same quality can often be achieved more e�ciently with automated

methods.

The decomposition of data editing in di�erent statistical functions given in Sec-

tion 4 allows one to assess a data editing process on a task-by-task basis. This

leads to a more re�ned complementation of automatic editing by (selective) man-

ual editing than what emerges from the classical literature on selective editing.

Evaluation of the results of automatic editing tasks also enables one to select

the best automatic method for a speci�c task and thus minimise manual actions

related to that task. Furthermore, the statistical functions in the decomposi-

tion each have their own set of minimal, well-de�ned inputs and outputs which

are independent of the method used to implement the function. This modular

approach to data editing o�ers clear potential for the development of reuseable

components, yielding e�ciency gains in process design.

To conclude, we see the following research opportunities. First of all, standard-
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Table 4. Relative strengths and weaknesses of

manual and automated data editing.

Editing mode

Aspect Manual Automated

Variable

Observed variable − +

Unit property + −
Edit rules

Hard edits − +

Soft edits + −
Use of aux. information

Structured − +

Unstructured + −
Type of unit

Simple − +

Complex + −

ised quality aspects of the statistical functions identi�ed in Section 4 should

be developed. Such aspects could be, for instance, the fraction of false nega-

tives (or positives) in the selection of suspicious units or erroneous �elds, the

prediction accuracy of imputed values obtained by some imputation method or

the reduction in bias of estimates due to di�erent amendment functions. This,

then, would allow of a standardised way to compare data editing processes and

paves the way for further development of reusable components based on vari-

ous methodologies. Secondly, data editing research should focus on areas where

automated data editing is currently less suitable (Table 4). Interesting �elds of

research are the use of unstructured information to verify and/or amend data

and the use of soft edits in automated data editing. Some recent progress in

the latter �eld was made by one of the authors (Scholtus and Göksen, 2012;

Scholtus, 2013). The use of for example web scraping or text mining techniques

in data editing remains largely unexplored.
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