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CHAPTER 1

Introduction

The focus of this introduction is to introduce the non-specialist reader
into the subjects of this thesis. For more specialized introductions and
theory the reader is referred to the subsequent chapters.

This thesis is about the influence that light has on the behaviour of small
molecules. With small molecules, we mean molecules which consist of only
a few atoms. These molecules are to be found almost everywhere in nature.
Any physical environment with temperatures below about 5000 K is capable
of hosting molecules, and thus one can obtain information about these en-
vironments by studying the molecules in them. Examples of environments
where the study of small molecules is important include combustion engines
and flames, planetary atmospheres, the interstellar medium and molecular
clouds, star-, and planet forming regions, and the universe before the forma-
tion of the first stars. It is often hard to study molecules directly in their
environment. However, since molecules (and atoms) interact with electro-
magnetic radiation, we can study the light which is emitted or altered by
atoms and molecules. Thus, if we precisely understand the interaction be-
tween molecules and electromagnetic radiation we can gain information about
the environment they are in, such as pressure, temperature and the presence
of electric or magnetic fields. Alternatively, molecules can be probed, and
even controlled in the laboratory using precisely tuned electromagnetic fields.

1
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1.1 The shoulders of giants

It was first noticed by William Hyde Wollatson in 1802 that the spectrum of
sunlight contains dark lines. These, and more lines were independently redis-
covered and categorized by Josef von Fraunhofer in 1814, who first recognized
the importance of this discovery. Fraunhofer’s work opened up an active field
of research, called spectroscopy, which in 1860 culminated in Kirchoff and
Bunsen’s statement1 that every chemical element has a characteristic ab-
sorption spectrum. They deduced that the dark lines in the solar spectrum
were due to absorption of solar light by elements in the sun’s atmosphere2,3.
Kirchoff also formulated his three laws of spectroscopy, which postulated
the black-body radiation of heated bodies, and the discrete absorption and
emission lines of gases.

Although this realization quickly found applications, no underlying phys-
ical theory of light-matter interaction existed. In fact, no complete theory
of electromagnetism existed. An important step was taken by James Clerk
Maxwell4, who, building on the work of Michael Faraday, published a paper
in 1861 where he first unified magnetic and electric phenomena in terms of
a mechanical model. Later, Maxwell abandoned the mechanical interpreta-
tion, and in 1864 he presented his dynamical theory of the electromagnetic
field before the Royal Society5–7. Maxwell’s of theory electromagnetic fields
could describe for the first time electromagnetic fields in terms of propa-
gating waves. The theory also describes the interaction of electromagnetic
fields with (macroscopic) material objects. Maxwell’s theory was soon con-
firmed experimentally by Heinrich Rudolf Hertz who discovered radio waves
in 18888. The classical theory of electromagnetism was developed further in
the second half of the 19th century, where important contributions were made
by Lorentz, Poynting, and Heaviside. The latter is credited for transforming
Maxwell’s original twenty differential equations to the set of four vector dif-
ferential equations which are found in the textbooks today. It is safe to say
that the dynamical theory of electromagnetic fields revolutionized science in
the 19th century, since Maxwell developed the first physical theory where
Newton’s idea of action on a distance was left behind. This concept, via the
work of Lorentz, ultimately led to the development of special relativity.

In spite of the large successes obtained trough the development of classical
electromagnetism, physics was facing some severe problems at the end of
the 19th century. In 1885, Johann Jakob Balmer had published a simple
formula that predicts the occurrence of a series of lines in the spectrum
of the hydrogen atom9. However, there was no underlying physical model
which explains why there should be discrete lines, nor why they should occur
exactly at the places where they do. A second problem was the shape of
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the spectrum of black body radiation emitted by heated objects. The latter
problem was solved by Max Planck, who published a paper in 1901, where
he assumed that matter and radiation can exchange energy only in discrete
quantities10. Using the machinery of statistical mechanics, he was able to
derive the shape of the black body spectrum. The idea of quantized radiation-
matter interaction was taken a step further by Albert Einstein. In 1905
he postulated that the fact that light-matter interaction occurs in discrete
quantities of energy, is not a property of the interaction process, but rather
that electromagnetic radiation itself comes in quantized packets11. With
this assumption, he was able to explain the photo-electric effect12 which had
been discovered by Hertz13 in 1887. Thus, Einstein abandoned Maxwell’s
theory of electromagnetic radiation by introducing a wave-particle duality
for electromagnetic radiation. In 1907, Einstein showed14 in a paper on the
specific heat of solids, that the motion of atoms oscillating in a solid also
has to be quantized in order to account for Planck’s radiation law. Thus,
in less than a decade after 1900, the measurement and modeling of light-
matter interaction had undermined the foundations of 19th century physics:
classical electromagnetism and classical mechanics. An equally important
role was played by the emerging theory and measurements on radioactivity
and scattering of charged particles, and the theory of (special) relativity.
However, the focus of this thesis is on light-matter interaction. On the atomic
and molecular level, physics was back to the same situation as around 1860:
phenomenological models existed, but no underlying theory for the structure
of matter and radiation existed to explain phenomena on that scale.

In 1911, Ernest Rutherford published a paper15, where he reanalyzed
scattering experiments of Geiger and Marsden16,17. He deduced that atoms
must consist of a positive charge centered in a small volume with negatively
charged electrons in a much larger volume around it. In 1913 Niels Bohr
published a paper18 in which he developed a physical model for the hydro-
gen atom. He postulated that electrons occupy stable, discrete circular orbits
around the nucleus, and that light can induce transitions between those or-
bits. According to Bohr’s theory, the electron cannot have any amount of
energy of motion, but only certain values E(n), which can be numbered with
n = 0, 1, 2, . . .. The value of n determines the energy, and is nowadays called
a quantum number. The frequencies of light which can be absorbed by the
atom are then determined by the energy differences between the states num-
bered with different n. This model, combined with Planck’s radiation law
allowed Bohr to derive the spectroscopic line series of Balmer, and a similar
series found by Paschen in 190819. In fact, he predicted a family of series, of
which one had been observed by Lyman in 190620, but Bohr was not aware
of at that time.
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Bohr’s paper was the start of what is now known as the “old quantum
theory”. In the old quantum theory, a system of particles would be treated
with classical mechanics, augmented with certain ad hoc quantization rules,
just like Bohr had done in his paper. In classical mechanics, a system of
particles can in theory have any internal energy of motion E. Finding quan-
tisation rules amounts to limiting the possible energies for such a system
to a countable number of energies. Bohr had done this for the motion of
an electron about a nucleus and later similar procedures were found for the
rotational motion of complete molecules, and for the vibrational motion of
atoms in molecules. In the decade or so following the publication of Bohr’s
paper, spectroscopists adopted the old quantum theory to interpret many
atomic and molecular spectra. For example, in the old quantum theory, the
possible end-over-end rotational energies E(J) of a diatomic molecule were
given by21,22:

E(J) = hc[B(J2 + const.) + DJ4 + FJ6 . . .], (1.1)

where h is Planck’s constant, c the speed of light, the B, D and F are
so-called spectroscopic constants and J is the rotational quantum number,
which can take values 0, 1, 2, . . .. Although the old quantum theory allowed
spectroscopists to interpret and classify the spectra of many molecules, it
was certainly not complete. Firstly, the old quantum theory works only for
systems where particles stick together, such as atoms and molecules, but it
does not work for processes where particles collide, recombine, or dissociate.
Secondly, there was no way of determining spectroscopic constants such as
B, D, F .. from theory, since there was no underlying mathematical theory
which explained why the energies should be discrete at all. These problems,
and more, were solved with the advent of the modern quantum theory in
1925.

Modern quantum theory was developed independently via two different
routes. The first to arrive at modern quantum theory was Werner Heisen-
berg, who invented and published his matrix mechanics in 192523. In his
theory, observable quantities (observables) are represented by mathematical
matrices. The development of observables in time is described by the devel-
opment of these matrices in time according to the Heisenberg equation. At
around the same time, Louis de Broglie suggested in his PhD thesis24 that
not only light, but also material particles exhibit a wave-particle duality.
Using this idea, he was able to mathematically derive the Bohr-Sommerfelt
quantization rules from the old quantum theory. In 1926a Erwin Schrödinger

aOne often finds the year 1925 for the discovery of the Schrödinger equation. It is
known that it was actually derived by Schrödinger in 1925 but appeared in print in 1926.
The paper was received by Annalen der Physik on January 27, 1926.
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published the mathematical equation that describes how these matter-waves
must propagate in time25,26. With his formulation Schrödinger derived the
spectrum of the hydrogen atom, and he showed that his formulation could
be generalized to other systems. Not much later he also showed that his
wave mechanical description is completely equivalent to Heisenberg’s matrix
mechanics27.

The impact of modern quantum theory on atomic and molecular physics
was, and is, huge. The formulation of quantum mechanics led to a whole
series of discoveries of new physical phenomena, which continues to this
day. Some achievements worth mentioning here are: the explanation of the
chemical bond (Heitler and London, 1927)28, the quantum mechanical de-
scription of absorption and emission of electromagnetic radiation by atoms,
(Dirac, 1927)29, the discovery of electron spin (Uhlenbeck and Goudsmit,
1925)30,31 and it’s explanation as a consequence of special relativity by Dirac
in 192832,33.

The appearance of quantum mechanics also had a large impact on the
field of spectroscopy. For example, as it turns out the equation giving energy
levels for rotating diatomic molecules, derived in the old quantum theory [see
Eq. (1.1)] is not entirely correct. A better equation is given by:

E(J) = hc[BJ(J + 1) + DJ2(J + 1)2 + ...], (1.2)

where, depending on the molecule, J can have the values 1, 2, . . . or 1/2, 3/2, . . ..
The fact that J can be half-integer is a consequence of the existence of spin.
In principle, using modern quantum mechanics one can also calculate the
constants B, D, . . . for molecules, although it is certainly no straightforward
calculation. Similar changes were necessary for quantum numbers describ-
ing vibration of molecules. This led to a complete revision of spectroscopic
constants, in the years following 1925, culminating to a paper by Robert
Mulliken22 in 1930 where the modern standards for spectroscopic notation
were settled. Nearly all conventions put down in Mulliken’s paper are still in
use today. It is safe to say that the paper by Mulliken marks the completion
of the foundation for modern spectroscopy, nearly 130 years after Wollatson
noted the dark lines in the spectrum of the sun.

Nowadays, spectroscopy plays a central role in molecular science, and
virtually every application or experiment which is designed to investigate
molecular processes includes some form of spectroscopy. One of the most
important ideas being developed nowadays theoretically as well as experi-
mentally, is that electromagnic fields and radiation can be used not only to
perform measurements on molecules, but to also control them.

Important examples include hexapole focusing, where a beam of mole-
cules is focused at some point in a vacuum chamber by leading them through
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a hexapolar electromagnetic field, and Stark deceleration34 where a beam of
molecules can be slowed down using carefully tuned electromagnetic fields
and eventually even be trapped. Once molecules can be precisely controled,
it becomes possible to perform experiments on them which, combined with
detailed theoretical models, can give insight into their dynamics on a fun-
damental level. One example is the velocity map imaging35–37 technique,
where a laser is focused on a controled beam of molecules, causing some of
the molecules to break up. With velocity mapped imaging, it is possible to
study the the quantum distribution of the separating fragments as a function
of their flight direction and velocity. Together with theoretical models, these
experiments make it possible to study molecular processes in unprecedented
detail. Other examples include the study of precisely controlled molecular
collisions and chemical reactions. In the relatively new field of “cold mole-
cules38”, researchers are trying to cool down molecular gases to the point
where they form a Bose-Einstein condensate. Development in this field also
strongly depends on the availability of sound theoretical models and compu-
tational methods. For example, using methods from theoretical chemistry,
it is possible to point out or reject candidate molecules to cool to Bose-
Einstein condensates for certain experiments39. One advantage of being able
to slow down and cool ensembles of molecules is that the interaction time
with a probing laser can be drastically increased, allowing for accurate mea-
surements. Developments in ultrahigh resolution molecular spectroscopy are
now reaching the point where spectroscopists are able to study the possi-
ble variability of fundamental constants, such as the electron-proton mass
ratio40,41 and the fine structure constant42.

1.2 Photoinduced dynamics

The most important forces that govern the behaviour and structure of a
molecule are electromagnetic in nature. Therefore, when a molecule is put
in an external electromagnetic field, the dynamics of the electrons and nuclei
which constitute the molecules will change. The collection of effects that can
occur, are called photoinduced dynamics. Examples include excitation of
the vibrational or rotational motion of the nuclei, excitation of the electronic
motion in the molecule, break-up of the molecule (photodissociation) either
directly or via some intermediate process (predissociation), and formation
of molecules from separate fragments (radiative association, Raman associa-
tion). Most of the examples mentioned here are treated in later chapters of
this thesis.

In a complete theoretical description, the electromagnetic attraction be-
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tween electrons and nuclei, the repulsion between electrons and nuclei amongst
each other, and interaction with the external electromagnetic field should be
treated quantum mechanically. However, there are certainly no analytical
solutions available for the equations that govern such complex systems, and
it is computationally difficult to obtain numerical solutions. Fortunately, it
is possible to make some simplifying assumptions by neglecting or approx-
imating relatively small physical effects. First, electromagnetic interactions
are treated classically, and it is assumed that electromagnetic forces act in-
stantly between charged particles instead of traveling with the speed of light.
Second, it is assumed that the electrons and nuclei move slowly enough (with
respect to the speed of light), so that special relativistic effects can be ig-
nored. The conditions that validate the first assumption are easily met here.
The molecules that are studied in this work are very small (typically on
the order of 1 Å= 10−10 m), so it takes a very short time for light to travel
through the system. The second assumption becomes problematic only when
the atoms involved are much heavier than the ones that are treated in this
work. However, it does imply that spin has to be introduced ad hoc (by in-
troducing it as an extra degree of freedom in the wave function), to account
for the electronic and nuclear structure of the molecule.

Finally, we assume that the field external to the molecule is weak enough,
so that the characteristics of the molecule stay similar to the characteristics
of the molecule outside of the field. The computational methods following
from the third assumption are called perturbation theory. It is based on the
notion that the stable configurations of a system will change only slightly
when a small influence (perturbation) is exerted from outside.

With these assumptions, the procedure to theoretically describe photoin-
duced dynamics separates into two steps: first, the wave function for the
free molecule is found by numerically solving the corresponding Schrödinger
equation, and second, perturbation theory is applied to model the dynamics
induced by external electromagnetic fields. However, as it turns out, mole-
cules are so complex that an extra assumption must be made to handle the
first step: the so-called adiabatic-, or Born-Oppenheimer approximation43.
Since the atomic nuclei are much heavier than their surrounding electrons
and the total forces exerted upon electrons and nuclei are equal, the nuclei
move much slower than the electrons.

This allows one to separate the molecular Schrödinger equation in such a
way that it can be solved for the electrons and nuclei consecutively. In many
situations, and also in the work described in this thesis, the approxima-
tions made here are too severe to accurately reproduce experimental results.
Thus, considerable efforts have to be made a posteriori to correct for the ef-
fects introduced by the approximations. In this work, the coupling between
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electronic spin and electronic motion (spin-orbit coupling) and the coupling
between nuclear (rotational) motion and electronic motion is especially im-
portant. The former effect is caused by neglecting special relativity, the latter
by the Born-Oppenheimer approximation.

For example, in Chapter 2 the lifetimes of excited electronic states of the
OH radical are calculated. In the process that is studied, the OH molecule
can make a transition from an excited electronic bound state to an unbound
state via spin-orbit coupling or a coupling between rotational motion of the
nuclei with electronic motion. This effect shortens the lifetime of the studied
states (otherwise determined by radiative decay) by a factor of ten or more.
In Chapter 3 the rovibrational energy level spectrum and radiative lifetimes of
OH in the electronic ground state are computed. Neglecting coupling between
rotational and electronic motion would result in about 10% difference in
some of the computed lifetimes. In Chapter 4, coupling between nuclear
rotational motion and electronic motion is included in the calculations to
reproduce the energy level spectrum of molecular Hydrogen. The fact that
the peaks in the so-called Raman association spectrum (Fig. 4.3 and 4.4)
are split in two is also a consequence of nuclear rotaional motion. Finally,
in Chapter 6, momentum coupling (non-adiabatic coupling, neglected in the
Born-Oppenheimer approximation) between five different electronic states of
N2O is essential to describe photodissociation processes in the N2O molecule.

1.3 Molecules in this thesis

In the following subsections, some examples are given where the molecules
treated in this work are of importance. The main results of this thesis are
sketched.

1.3.1 The hydroxyl radical OH

The OH molecule is a highly reactive agent (radical) in the earth’s atmo-
sphere. It is produced mainly by photodissociation of water induced by the
sun’s ultraviolet radiation, but it is also present as a chemical reaction inter-
mediate. Because of it’s high reactivity, the OH molecule helps transforming
many types of molecules in the earth’s atmosphere, some of which are emit-
ted by mankind. For this reason the OH molecule is sometimes referred to as
the atmosphere’s cleaning agent. In Fig. 1.1 an overview of some processes
involving OH in the earth’s atmosphere are shown.

One way to perform measurements on the atmosphere, is to observe the
radiation that is emitted by atmospheric OH on the night side of earth. Dur-
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Figure 1.1: Schematic overview (Nicolet diagram) of chemical processes in the
earth’s atmosphere involving the OH molecule44. Species on the arrows are reac-
tants.

Figure 1.2: False color images of OH infrared radiation in the night sky45. The
ripples are called gravity waves, and are caused by temperature and pressure dif-
ferences in the earth’s atmosphere.

ing the day, OH radicals are excited (heated up) by sunlight and during the
night they can emit infrared radiation which may be observed from earth
(see Fig. 1.2). The radiation process is a quantum mechanical process, and
it is clear that a thorough understanding of it can directly lead to better
understanding of OH in atmospheric circumstances, and thus improve atmo-
spheric research. In Chapter 3 we report, among other things, on accurate
calculations of emission coefficients for OH.
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A second field where OH plays an important role is in astrophysics. For
example, the stimulated emission of radio waves (MASER) by OH-molecules
near supernovae are measured by radio astronomers to investigate supernova
shock waves46. Other applications of OH-MASERs include the investiagation
of pulsars47, star-forming regions48 and envelopes of late-type stars49.

OH radicals are also produced in our own solar system by comets. When
comets approach the sun, water vaporizes from the outer mantle, which sub-
sequently dissociates under the influence of sunlight into H and OH. Some
of the highly excited OH radicals will subsequently fall apart into O and H,
and some will radiate. Part of the produced OH-molecules will dissociate
under the influence of solar radiation. There are several pathways by which
OH molecules can dissociate under the influence of sunlight. One of the
pathways runs via excitation to the so-called D2Σ− and 32Σ− states50.

In chapter 2, a 2+1 Resonance Enhanced MultiPhoton Ionisation (2+1
REMPI) experiment which probes the excited D2Σ− and 32Σ− states of the
OH molecule is modeled. The nuclear and electronic structure are deter-
mined by ab initio calculations and rotational constants of these states are
determined. A good correspondence between experimental and computed
constants is found, and an idea is given of the relative importance of differ-
ent excitations in the experiment. The various decay processes (emission,
predissociation) of these excited states are also studied and compared for the
first time. It is concluded that predissociation is the most important decay
process for molecules in these excited states.

1.3.2 The hydrogen molecule H2

The hydrogen molecule (H2) is subject of the chapters 4 and 5. It is both
the most simple neutral molecule and the most abundant molecule in the
universe. It was also one of the first molecules to appear in the history of the
universe51–53. H2 was present long before the first stars were born, about 108

years after the big bang. In fact, it is generally believed that the presence of
molecular hydrogen was important for the formation of those first stars. Ac-
cording to current early universe models, the first stars started forming when
clouds of atomic hydrogen, deuterium, helium, and some molecular species
were formed under the gravitational pull of dark matter. The accumulation
of matter causes the gas clouds to increase in temperature, counteracting the
collapse. Thus, in order to explain the formation of the first stars, some kind
of cooling mechanism must have been present in the early stages. The most
probable option is the presence of a molecular species, such as H2, which
is able to convert thermal energy into (infrared) radiation. This raises the
question as to how H2 is formed, and how much H2 was around at that time.
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In Chapter 4, an H2 production process called Raman association is pro-
posed that could have contributed to the formation of H2 in the early uni-
verse. Raman association is a scattering process where background radiation
scatters inelastically off two colliding hydrogen atoms, taking away kinetic
energy. It is shown how to calculate the necessary properties (cross sections)
to describe this process.

In Chapter 5 the results of Chapter 4 are used to calculate the rate of H2

formation, which is then applied to an actual model of the early universe.
It is shown that the Raman association process contributed significantly at
some time (redshift factor z ≈ 1600 or about 1.5 × 105 years), but the total
contribution to H2 production is minor compared to other processes such as
the one initiated by H + H+ collisions.

1.3.3 Nitrous oxide N2O

The N2O molecule is probably best known for its anaesthetic effects, or under
its common name “laughing gas”. It was first synthesized by Joseph Priestley
in 1775 who recognized its anaesthetic properties54.

Modern scientific interest in N2O stems mainly from the fact that the
N2O molecule is an important constituent of the earth’s atmosphere44 and
the estimate that N2O is responsible for about 5% of the human induced
greenhouse effect55. Atmospheric N2O arises from both natural and human
sources, the main human sources being agriculture, sewage treatment, burn-
ing of fossil fuels and various chemical industries. It is estimated that the
atmospheric N2O concentration has increased by about 16% since the start
of the industrial revolution56. In the upper atmosphere, N2O molecules can
photodissociate under the influence of sunlight, yielding a highly reactive
oxygen atom, and the chemically inert N2 molecule.

The photodissociation processes that can take place in a molecule such
as N2O can be very complex. In principle, all information about the process
can be obtained in the laboratory by breaking up the molecule with a laser,
and determining the quantum states of the fragments. Such experiments
are difficult however, and interpreting the lab data in terms of a dynamical
model of the photodissociation process is far from easy. Thus, theoretical
models have to be built to help interpret the lab data, and to gain a bet-
ter understanding of the system. Based on that knowledge, more advanced
experiments might be developed that challenge theory again.

In Chapter 6, we use N2O as an example molecule to test a photodis-
sociation model57, wich has been applied on N2O and various comparable
molecular systems in the last few years58,59. Within this so-called long-range
interaction model the distribution of quantum states (polarization) of the
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emerging oxygen atom can be estimated. In order to check the model, in
Chapter 6 a more advanced model of the N2O molecule is developed, and
detailed calculations have been performed in order to study the assumptions
underlying the model. The current results indicate that some of the assump-
tions may not hold. In particular, the assumption that the behavior of the
interaction potential at the point where the most important dynamical pro-
cesses take place are of the analytical long-range form is not valid. However,
the basic dynamical description of the model appears correct: the short-range
dynamics mainly determine the outcome of the photodissociation process at
relatively high photodissociation energies, even for the relatively sensitive
polarization effects.

1.4 Notes on publications

Most of the work in this thesis has been accepted for publication in scientific
journals. The publications are indicated at the beginning of each chapter.
The full lists of authors can be found in the list of publications (p.115).
Differences between published material and the thesis are pointed out here.

• Chapter 2: References to “the accompanying paper” are replaced by
Greenslade et al. 60 .

• Chapter 3: Numbers in Table 3.4, Table 3.5 and Fig. 3.4 differ slightly
from the numbers in van der Loo and Groenenboom 61 . The changes
are reported in an erratum, and do not alter the conclusions. The
appendix to Chapter 3 was not published before.

• Chapter 5: The introduction and the discussion of the chemical rate
equations is expanded. Figure 5.3 and a discussion have been added.



CHAPTER 2

Ab initio calculation of (2+1) REMPI spectra and

lifetimes of the (D, 3)2Σ− states of OH and OD

High-level ab initio potential energy curves and transition dipole mo-
ments for the OH X2Π, 22Π, 12Σ−, D2Σ−, 32Σ−, A2Σ+, B2Σ+, 12∆,
14Σ−, and 14Π states are computed. The results are used to estimate
the (2+1) resonance enhanced multiphoton ionization spectrum for the

(D, 3)2Σ−(v′)
2hν←−− X2Π(v′′) transitions, which are compared with ex-

periments by M. E. Greenslade et al.
60 . We use the discrete variable

representation-absorbing boundary condition method to incorporate the
effect of the dissociative intermediate 12Σ− state. We obtain qualitative
agreement with experiment for the line strengths. Radiative and predis-
sociative decay rates of the Rydberg (D, 3)2Σ− states of OH and OD
were computed, including spin-orbit coupling effects and the effect of
spin-electronic and gyroscopic coupling. We show that the lifetime of the
Rydberg 2Σ− states for rotationally cold molecules is limited mainly by
predissociation caused by spin-orbit coupling.

JCP 123 074310 (2005)

2.1 Introduction

The first observation of the Rydberg D2Σ− state of OH was reported by
Douglas62 in 1974, while the first theoretical potential energy curves of the
D2Σ− and 32Σ− states were reported one year earlier by Easson and Price63.
The Rydberg D2Σ− and 32Σ− states have been studied experimentally64–66

13
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and theoretically67–69 ever since by various authors. In 1983, van Dishoeck67

et al. reported the first extensive theoretical description of the D2Σ− state.
The electronic assignments D2Σ−(1π23pσ) and 32Σ−(1π24sσ) are discussed
by Stephens and McKoy 68 . The need for a good description of the ∼ 10
eV energy region of OH/D for astrophysical applications has long since been
recognized50,70,71 and is still relevant today72. Recently a sensitive OH/D
detection scheme based on the one-photon D2Σ− ← X2Π transition was
proposed66.

The present work was directly motivated by the recent two-photon res-
onant, resonance enhanced multiphoton ionization [(2+1)REMPI] experi-
ments performed on rotationally cold, state selected OH[X2Π(v, J = |MJ | =
|Ω| = 3/2)] radicals by Greenslade et al.60. The purpose of our work is to ex-
plain why certain transitions were observed, and others not, and to estimate
the absolute sensitivity of the experimental method. The lifetimes of the Ry-
dberg 2Σ− states are still only estimated very crudely in various papers64,66.
Here, we elucidate both radiative and nonradiative decay mechanisms of the
Rydberg 2Σ− states to accurately estimate the lifetimes of these states for
OH and OD.

In Sec. 2.2.1 we describe the calculation of a new set of potential en-
ergy curves and electronic transition dipole moments, computed at the mul-
tireference configuration interaction level, for all electronic states up to and
including the 32Σ− state (see Figs. 2.1 and 2.2). In order to describe the
(2+1)REMPI spectrum, we derive in Sec. 2.2.2 a rate model that includes
the two-photon excitation, the detection step, and the competition of the
detection step with decay of the excited states. We use second-order per-
turbation theory (Sec. 2.2.2) to estimate the two-photon absorption cross
sections and to compare the relative intensities for different vibronic transi-
tions.

Since the experiment is performed on state-selected, aligned molecules,
we also derive the equations that relate the two-photon absorption strength
to the direction and polarization of the laser beam with respect to the (space-
fixed) quantization axis of the total molecular angular momentum.

Calculating the (D, 3)2Σ− ← X2Π two-photon absorption absorption
cross sections involves an integral over the nuclear states of the dissociative
12Σ− state. In Sec. 2.2.2 we show how the discrete variable representation-
absorbing boundary condition (DVR-ABC) method of Seideman and Miller73–75

can be applied to treat this problem numerically. In Sec. 2.2.2 we discuss
the calculation of the decay rates of rovibrational Rydberg (D, 3)2Σ− states
associated with several homogeneous and heterogeneous predissociation pro-
cesses.
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2.2 Theory

We describe the wave function in terms of eigenfunctions of the nonrelativistic
molecular Hamiltonian Ĥ:

Ĥ = T̂nuc + Ĥelec, (2.1)

where Ĥelec represents the non-relativistic electronic Hamiltonian in the clamped-
nuclei approximation and T̂nuc is the nuclear kinetic energy operator, which
can be written as the sum of a radial (T̂r) and a rotational part Ĥrot:

T̂nuc = T̂r + Ĥrot =
−~

2

2µr

∂2

∂r2
r +

R̂2

2µr2
, (2.2)

where r is the internuclear distance, µ is the reduced mass of the system,
and R̂ ≡ Ĵ− Ŝ− L̂ describes the nuclear angular momentum operator acting
on the polar angle β and the azimuthal angle α of the diatomic axis in the
space-fixed frame. The operators Ĵ, Ŝ, and L̂ represent the total angular
momentum apart from nuclear spin, the electronic spin, and the electronic
orbital angular momentum, respectively. At low rotational levels, the Π
states of OH/D approach the Hund’s case (a) limit, while multiplets of Σ
symmetry are formally pure Hund’s case (b) states76. Since in this work we
describe the OH/D molecule at only the lowest rotational levels, we use the
pure case (a) description for Π states and the pure case (b) description for Σ
states. The Hund’s case (a) and (b) wave functions of parity p are given by:

|v; JMJΩ(L)ΛSΣp〉 =
[1 + (−1)p î ]
√

(2 − δΛ0δΣ0)

χa
v(r)

r
|JMJΩ(L)ΛSΣ〉 (2.3)

|v; JMJN(L)ΛSp〉 =
[1 + (−1)p î ]
√

(2 − δΛ0)

χb
v(r)

r
|JMJN(L)ΛS〉, (2.4)

where J , MJ , Ω, N , Λ, and S are the usual Hund’s case (a), (b) quantum

numbers77. The nuclear wave functions (χ
a/b
v ) are labeled with the vibrational

quantum number v, which is replaced by the energy E for continuum states.
The superscripts (a) and (b) represent all case (a) and case (b) quantum

numbers. States with parity (−1)J−1
2 and (−1)J+

1
2 are labeled by e and

f, respectively. The electronic orbital angular momentum L is not a good
quantum number. However, we use (L) to indicate its value in the atomic
limit. We will also use the labels F1 and F2 to indicate Hund’s case (b) states
with N = J + 1

2
and N = J − 1

2
, respectively. We use the phase conventions
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defined in the appendix of van Vroonhoven and Groenenboom 78 to obtain
the action of the inversion operator î:

î|JMJΩ(L)ΛSΣ〉 = (−1)J+L−S|JMJ −Ω(L) −ΛS −Σ〉 (2.5)

î|JMJN(L)ΛS〉 = (−1)N+L|JMJN(L) −ΛS〉. (2.6)

The rotronic Hund’s case (a) and (b) basis functions are given by:

|JMJΩ(L)ΛSΣ〉 =
√

[J ]/4πD
(J)∗
MJΩ(α, β, 0)|(L)ΛSΣ〉 (2.7)

|JMJN(L)ΛS〉 =
∑

MNMS

√

[N ]/4πD
(N)∗
MN ,Λ(α, β, 0)|(L)Λ〉|SMS〉

×〈NMNSMS|JMJ〉, (2.8)

where
√

[N ]/4πD
(N)∗
MNΛ(α, β, 0) represents a two-angle normalized Wigner D-

matrix and [X] ≡ 2X + 1.

2.2.1 Electronic structure calculations

Ab initio potential energy curves for the OH X2Π, 22Π, 12Σ−, D2Σ−, 32Σ−,
A2Σ+, B2Σ+, 14Σ−, 14Π, and 12∆ states are computed with the MOLPRO79

program package at the internally contracted multireference configuration in-
teraction with single and double excitations80,81 (MRCI) level. The molecular
orbitals are obtained from state averaged complete active space self consistent
field (SA-CASSCF) calculations82,83. We also computed the the Breit-Pauli84

spin-orbit coupling and L̂± matrix elements and the r-dependent electronic
transition dipole moments at the SA-CASSCF+MRCI level. Details of the
ab initio calculations are given in Table 2.1.

All ab initio points are interpolated using cubic splines. To improve our
ability to predict the position of unobserved vibrational levels, we also apply
a linear scaling of the form

Vsc(r) = c3V (r′), r′ = c1 + c2r, (2.9)

to the potentials V (r) of the D2Σ− and 32Σ− states. The scaling parameters
c1, c2, and c3 are obtained by a non-linear fitting procedure that minimizes
the relative error in calculated vibrational spacings and rotational Bv con-
stants. The D2Σ− and 32Σ− state curves are shifted to match the experimen-
tally observed OH[(D, 3)2Σ−(v = 0) ← X2Π(v = 0)] transition frequencies.
The dissociative curves are shifted to match the atomic energies87 at 10 a0,
and the B2Σ+ potential energy curve was shifted to match the experimental
OH[B2Σ+(v′ = 0) ← X2Π(v′′ = 7)] transitions as reported by Copeland et

al.88
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Table 2.1: Details of the ab initio electronic structure calculations.

Statea basisb spacec SA-CASSFd

X2Π aV6Z 5σ2π
A2Σ+, 12Σ− aV6Z 5σ2π

14Σ− aV6Z 6σ1π
14Π aV6Z 6σ1π
12∆ aV6Z 5σ2π 12Σ−(1

4
)

D2Σ− daV5Z 6σ2π 12Σ−, 12∆(1
2

: 1
4
)

32Σ− daV5Z 6σ2π 12∆, (1, D)2Σ−

22Π daV5Z 5σ2π X2Πx,y(
1
4
)

B2Σ+ daVTZ 5σ2π A2Σ+, 12∆

〈X2Π|d̂|12Σ−〉 aV6Z 5σ2π

〈X2Π|d̂|A2Σ+〉 aV6Z 5σ2π

〈12Σ−|d̂|D2Σ−〉 daV5Z 6σ1π 12∆

〈12Σ−|d̂|32Σ−〉 daV5Z 6σ1π 12∆, D2Σ−

〈X2Π|d̂|D2Σ−〉 daV5Z 6σ1π 12Σ−, 12∆

〈X2Π|d̂|32Σ−〉 daV5Z 6σ1π 12∆, (1, D)2Σ−

〈32Σ−|d̂|D2Σ−〉 daV5Z 6σ2π 12Σ−, 12∆

〈(D, 3)2Σ−|Ĥso|22Π〉 daVTZ 5σ1π X2Πx,y, 1
2Σ−, 12∆

〈(D, 3)2Σ−|Ĥso|B2Σ+〉 daVTZ 5σ1π A2Σ+, 12Σ−, 12∆

〈(D, 3)2Σ−|Ĥso|14Π〉 daVTZ 5σ1π 12Σ−, 12∆

a The electronic state or the matrix element. We used Davidson’s
correction85 for the (D, 3)2Σ−, 22Π, and B2Σ+ states. The L±
matrix elements are obtained from the same calculation as the
spin orbit matrix elements.

b The one-electron basis sets are of the (doubly) augmented corre-
lation consistent polarized valence triple-zeta, 5-zeta, or 6-zeta
[(d)aV(T,5,6)Z] type86. For the spin orbit and L± matrix ele-
ments uncontracted basis sets are used.

c The active space used in the SA-CASSCF calculation: nσ means
that the 2σ − nσ orbitals are included (the 1σ orbital is kept
doubly occupied in all calculations) and nπ means that the
1πx,y − nπx,y orbitals were used.

d States also included in the SA-CASSCF calculation. All states
have equal weights unless otherwise indicated, states in the first
column always have weight 1.
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2.2.2 (2+1) REMPI

The use of rate models to describe the production and detection of ions in
resonant multiphoton ionization processes is well established89–93. The (2+1)
REMPI process as described in Greenslade et al. 60 may be summarized
schematically as follows:

OH + 2hν
k1−→ OH∗

hν,k2−−−→ OH+ → detector
k3−→ OH, O + H (decay).

(2.10)

The state-selected OH molecule is first two-photon excited at rate k1, after
which it is either ionized (rate k2) with a third photon and detected as
OH+, or it decays (rate k3) and the molecule is lost for detection. The
rate coefficients in s−1 are given by:

k1 = g(2)σ(2)(ω)[I/~ω]2 (2.11)

k2 = σion(ω)I/~ω (2.12)

k3 = τ−1
OH∗ , (2.13)

where σ(2) is the generalized two-photon absorption cross section in cm4s,
I the laser intensity in W/cm2, ω the laser angular frequency in s−1, σion

the excited state ionization cross section in cm2 and τOH∗ the lifetime of the
excited state in s. The coherence factor g(2) for two-photon absorption is
1 if the molecule is excited with coherent light and 2 for chaotic light94,95.
We employ two extreme cases of this model to estimate the two-photon ab-
sorption strength. In the first extreme detection is very efficient, so we have
k2 ≫ k3 and the number of detected OH+ molecules #[OH+] ∝ k1. In the
other extreme, decay is faster than detection and we have #[OH+] ∝ k1k

−1
3 .

We assume a constant measurement time for all observations and an abun-
dance of OH-molecules in the molecular beam such that no saturation occurs.
In the case of fast ionization we obtain

#[OH+] ∝ g(2)(I/~ω)2σ̂(2), (2.14)

and in the case of fast decay:

#[OH+] ∝ g(2)(I/~ω)2τ−1
OH∗σ̂(2), (2.15)

where σ̂(2) is the integrated line cross section for two-photon absorption96:

σ̂(2) =

∫

dωσ(2)(ω). (2.16)
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Two-photon absorption

The generalized two-photon absorption cross section σ
(2)
fi in rationalized MKS97

units is given by94,95,98,99:

σ
(2)
J ′MJ′f ;J ′′MJ′′ i(ω) =

(2π)3α2ω2

e4
S

(2)
J ′MJ′f ;J ′′MJ′′ iδ(ωi − ωf + 2ω), (2.17)

where ω is the excitation angular frequency, α the fine-structure constant,
and e the elementary charge. Labels i and f indicate initial and final quantum
numbers v, Ω, L, Λ, S, and Σ for a Hund’s case (a) function and v, N , L, Λ,
and S for a Hund’s case (b) function. Here, we suppress the parity label p.
The two-photon line strength S(2) is given by:

S
(2)
J ′MJ′f ;J ′′MJ′′ i = ~

2 lim
ε↓0

∣

∣

∣

∣

∣

∑

∫

E

〈ψJ ′MJ′

f |ε · µ̂|ψE〉〈ψE|ε · µ̂|ψJ ′′MJ′′

i 〉
Eph + Ei − E + iε/2

∣

∣

∣

∣

∣

2

, (2.18)

where Eph = ~ω is the one-photon energy. The complete set of intermediate
states ψE includes both continuum (dissociative) states and discrete (bound)
states. The symbol

∑
∫

E
signifies the integration over the continuum interme-

diate states and a summation over the discrete intermediate states. We take
the propagation direction of the molecular beam as the space-fixed z-axis.
The laser polarization ε and the electronic dipole operator µ̂ are defined in
this frame. The spherical components of ε are given by

εq =
∑

p

D(1)∗
qp (φ, θ, χ)ε̃p, (2.19)

where (φ, θ, χ) are the zyz-Euler angles of the laser frame with respect to the
space-fixed frame and ε̃ is the polarization vector in the laser frame.

Applying the Wigner-Eckart theorem77 and recoupling the angular mo-
menta, we rewrite [Eq. (2.18)] as follows:

∑

∫

E

〈ψJ ′MJ′

f |ε · µ̂|ψE〉〈ψE|ε · µ̂|ψJ ′′MJ′′

i 〉
Eph + Ei − E + iε/2

=
∑

Jkq

(−1)J ′′+MJ′′

√

[k]E (k)
q

{

J ′′ 1 J
1 J ′ k

}

×
(

J ′ k J ′′

−MJ ′ −q MJ ′′

)

∑

∫

E

〈ψJ ′

f ||µ̂(1)||ψJ
E〉〈ψJ

E||µ̂(1)||ψJ ′′

i 〉
Eph + Ei − E + iε/2

, (2.20)

where E (k) = [ε ⊗ ε](k) is the two-photon polarization tensor77. Since the
X2Π ground state approaches the Hund’s case (a) limit, we need both the
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reduced matrix elements for a Hund’s case (b)←(a) transition as well as the
reduced matrix element for a Hund’s case (b)←(b) transition. The Hund’s
case (b)←(a) reduced matrix element reads:

〈ψJ
b ||µ̂(1)||ψJ ′

a′ 〉 = 〈χb
v|d̂

(1)
Λ−Λ′|χa′

v′〉δSS′(−1)2J
√

[N ][J ][J ′]

×
∑

Ωt

(

J 1 J ′

−Ω t Ω′

)(

J S N
−Ω Σ′ Λ

)

, (2.21)

while the Hund’s case (b)←(b) reduced matrix element is given by:

〈ψJ
b ||µ̂(1)||ψJ ′

b′ 〉 = 〈χb
v|d̂

(1)
Λ−Λ′(r)|χb′

v′〉δSS′(−1)J ′+S−Λ+1

×
√

[N ][N ′][J ][J ′]

{

J N S
N ′ J ′ 1

} (

N 1 N ′

−Λ Λ − Λ′ Λ′

)

. (2.22)

The body-fixed dipole operator d̂ is implicitly defined by

µ̂(1)
p =

∑

q

D(1)∗
pq (α, β, 0)d̂(1)

q . (2.23)

Since the experiments described in Greenslade et al. 60 are performed
on rotationally cold molecules, we neglect rotational effects on the radial
wave functions in the calculation of the two-photon transition strengths.
The dominant terms in the coherent sum are the states which are (nearly)
resonant with the one-photon energy, so we estimate the relative two-photon
line strength by taking into account the electronic states computed in this
work. The optically allowed intermediate states are the X2Π, 22Π, 12Σ−,
D2Σ−, and 32Σ− states. We neglect the contributions of vibrational levels
of the initial and final electronic states, as well as contributions of the 22Π
state which has a small Frank-Condon overlap with the final states. The
remaining two intermediate states [(12Σ−, D2Σ−) or (12Σ−, 32Σ−)] are of
2Σ− symmetry, so the cross section factorizes in a radial factor σ

(2)
fi and a

dimensionless angular factor S:

σ
(2)
J ′MJ′f ;J ′′MJ′′ i(ω) = σ

(2)
fi (ω)SJ ′MJ′N ′Λ′

J ′′MJ′′Ω′′Λ′′δ(ωi − ωf + 2ω), (2.24)

where σ
(2)
fi (ω) is found from Eqs. (2.17) to (2.24):

σ
(2)
fi (ω) =

~
2(2π)2α2ω2

e4

∣

∣

∣

∣

∣

∑

∫

Em

〈χf
v′|d̂Λ′−Λ|χm

E 〉〈χm
E |d̂Λ−Λ′′|χi

v′′〉
Eph + Eiv′′ − E + iε/2

∣

∣

∣

∣

∣

2

, (2.25)

where we added the vibrational quantum numbers for clarity. The summation
is over the vibrational levels of the 32Σ− state for transition to the D2Σ−
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state and vice versa, and the integration is over the 12Σ− nuclear continuum.
The angular factor for a Hund’s case (b)←(b)←(a) two-photon transition
can be written as:

SJ ′MJ′N ′Λ′

J ′′MJ′′Ω′′Λ′′ = [N ′][J ′][J ′′]

∣

∣

∣

∣

∣

∑

JN

(−1)ϕ[N ][J ]

×
∑

kq

√

[k]E (k)
pq

(

J ′ k J ′′

−MJ ′ −q MJ ′′

){

J ′′ 1 J
1 J ′ k

}

×
{

J ′ N ′ S
N J 1

}(

N ′ 1 N
−Λ′ Λ′ − Λ Λ

)

×
∑

Ωt

(

J 1 J ′′

Ω t Ω′′

)(

J S N
−Ω Σ′′ Λ

)

∣

∣

∣

∣

∣

2

, (2.26)

where ϕ = J ′′ + MJ ′′ − J + S − Λ′ + 1.

Numerical treatment

The bound state nuclear wave functions are represented on a grid using the
sinc-function discrete variable representation (sinc-DVR)100,101. The contri-
butions of the optically active bound intermediate states to the two-photon
transitions are computed using the relevant transition dipole moments de-
picted in Fig. 2.2. Summing over five vibrational levels of the intermediate
Rydberg 2Σ− states converges the calculations. Evaluating the contribution
of the dissociative 12Σ− intermediate state poses two problems: first, there
is an integral over nuclear states and second, the integrand is singular at the
one-photon resonance. However, a numerical treatment is possible when the
resolvent is rewritten as follows:

Ĝ(E∗) =
∫

dE
|χ12Σ−

E 〉〈χ12Σ−

E |
E∗ − E + iε/2

= lim
ε↓0

[E∗ − (Tr + V̂12Σ−) + iε/2]−1, (2.27)

where Ĝ is the Green operator, E∗ = Eph + Eiv′′ and we used (neglecting
spin-orbit coupling):

[T̂r + V̂12Σ− ]|χ12Σ−

E 〉 = E|χ12Σ−

E 〉. (2.28)

The Green operator can be represented on a grid when we impose absorbing
boundary conditions73–75. This is achieved by augmenting the potential V̂12Σ−

with a negative imaginary potential, which is equivalent to replacing ε/2 by
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an r-dependent function. Here, we choose the Woods-Saxon potential as a
functional form:

lim
ε↓0

ε/2 → ε(R) =
2λ

1 + exp [(Rmax − R)/η]
, (2.29)

where λ and Rmax are parameters to be adjusted so that the artificial poten-
tial does not penetrate the physically relevant region, while η is adjusted so
that no significant reflection off the imaginary potential takes place. In this
work this is accomplished by setting λ = 0.2Eh, Rmax = 12a0, and η = 0.4a0.

Decay Processes

The Rydberg 2Σ− states may decay radiatively to the X2Π and 12Σ− states
or through a radiationless process to the 22Π, B2Σ+, or 14Π states. The
Einstein A-coefficient in s−1 for a radiative transition is given by94:

AJ ′f ;J ′′i(ω) =
4αω3

3c2e2[J ′′]
|〈ψJ ′

f ||µ̂(1)||ψJ ′′

i 〉|2, (2.30)

where the reduced matrix element is given in Eqs. (2.21) and (2.22) for Hund’s
case (b)→(a) and Hund’s case (b)→(b) transitions, respectively, and ω is the
angular frequency of the emitted photon. The total radiative lifetime τr of a
state ψJ ′′

i is given by

τ−1
r =

∑

f

Afi +

∫

dEAfi(E)ρ(E), (2.31)

where the summation is over all final discrete states and integration is over
final continuum states, with ρ(E) the density of final states at energy E. The
integral over continuum states is approximated by

∑

E Afi(E)∆E, where the
energy step ∆E is determined by dividing the integration domain for each
initial state into 100 integration steps.

Several perturbative processes cause the Rydberg 2Σ− states to predis-
sociate. Here, we distinguish heterogeneous predissociation, caused by the
gyroscopic coupling from the Ĵ · L̂ operator, and homogeneous predissocia-
tion, caused by spin-electronic (L̂ · Ŝ) and spin-orbit coupling (Ĥso).

The predissociation lifetime τso associated with spin-orbit coupling is
given by:

τ−1
so =

2π

~

∑

f

|〈ψJMJ

f |Ĥso|ψJMJ

i 〉|2, (2.32)
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where the summation runs over all permitted rotronic B2Σ+, 22Π, and 14Π
states. The calculation of the spin-orbit matrix elements 〈f |Ĥso|i〉 is de-
scribed in Sec. 2.2.1. These matrix elements are computed near the crossing
of the two adiabatic Born-Oppenheimer potentials and are assumed con-
stant. The spin-orbit coupling couples the Rydberg states with both the
14Π1/2(Λ = 1, Σ = −1

2
) and the 14Π1/2(Λ = −1, Σ = 3

2
) states.

Since the 2Σ− and the 22Π Rydberg states dissociate adiabatically into
different atomic limits, L̂±-type couplings between these states are asymp-
totically zero. However, in the bound region, the L̂± operator has nonzero
matrix elements so that spin-electronic and gyroscopic coupling contribute
to the decay of the Rydberg 2Σ− states through the 22Π state. Calculation
of these matrix elements is described in section 2.2.1. We take the matrix
elements constant and compute them at a single point near the crossing of
two states.

In order to accurately compute the bound state and dissociative wave
functions, the adiabatic potential energy curves are augmented with the rel-
evant centrifugal terms for Hund’s case (a) or (b)102. Bound state wave func-
tions are computed with the sinc-DVR method100,101 and energy normalized
dissociative wave functions are computed with the renormalized Numerov
method with photodissociation boundary conditions103.

The total lifetime τ is given by τ−1 = τ−1
r + τ−1

so + τ−1
se + τ−1

gy , where
τse and τgy are the lifetimes associated with spin-electronic and gyroscopic
predissociation.

2.3 Results and Discussion

2.3.1 Electronic structure

Figure 2.1 depicts the potential energy curves computed in this work. The
quality of the ground state curve is tested by comparing vibrational levels
Gv and rotational constants Bv with recent experimental values by Colin
et al.104 and Mélen et al.105 We find errors in Gv which are < 0.1% for
v = 0 . . . 5 and errors < 0.2% for v = 6 . . . 10. The errors in Bv are <
0.06% for v = 0 . . . 8 and < 0.2% for v = 9 and v = 10. The computed
and available experimental values for the Rydberg (D, 3)2Σ− states for OH
and OD are shown in Table 2.2. The scaling parameters (c1, c2, c3) [see Eq.
(2.9)] obtained from the fit are (1.2173 × 10−4, 0.99199, 1.006) for the D2Σ−

state and (1.6856 × 10−4, 0.99515, 1.0065) for the 32Σ− state. Although the
potentials are changed only very little by these corrections, the improvement
in calculated Gv and Bv is substantial. The relative errors for the D2Σ− state
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.
Table 2.2: Vibrational spacings Gv and rotational constants Bv for the
OH/D Rydberg 2Σ− states (in cm−1), computed with ab initio poten-
tials, scaled ab initio potentials, and compared with experimental data of
Greenslade et al. 60

OH G(v) Bv

v ab initio scaled Exp. ab initio scaled Exp.
0 0 0 0 15.62 15.37 15.0
1 2583.05 2570.80 2566 14.86 14.63 14.8
2 5088.44 5064.70 5067 14.29 14.08 14.2

D2Σ−
3 7519.55 7486.56 7487 13.69 13.49 13.6
4 9839.70 9799.37 - 13.10 12.92 -
5 12054.94 12008.95 - 12.52 12.36 -
0 0 0 0 14.83 14.69 14.9

32Σ−
1 2643.48 2640.00 2640 14.43 14.30 14.1
2 5171.56 5165.85 - 13.91 13.79 -
3 7579.54 7572.85 - 13.35 13.23 -
4 9864.45 9858.03 - 12.76 12.66 -
5 12025.17 12020.22 - 12.17 12.08 -

OD
0 0 0 8.34 8.20
1 1902.15 1893.05 8.02 7.90

D2Σ−
2 3750.35 3732.41 7.78 7.66
3 5573.35 5547.26 7.56 7.45
4 7346.96 7314.07 7.33 7.22
5 9064.85 9026.15 7.09 6.70
0 0 0 7.89 7.82

32Σ−
1 1944.55 1941.80 7.75 7.68
2 3830.53 3825.66 7.57 7.50
3 5655.03 5648.70 7.36 7.30
4 7416.20 7409.07 7.14 7.08
5 9112.11 9104.85 6.92 6.86
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Figure 2.1: Ab initio potential energy curves for OH/D (in eV). The gray ar-
eas indicate the one-photon and two-photon energy range corresponding to the
experiments in Greenslade et al. 60

decrease by an order of magnitude to a mean deviation from the experimental
Gv to ∼ 0.07%. The improvement in Gv and Bv for the 32Σ− state is large,
mainly because of the small number of experimental data available. This
implies that extrapolation to v ≥ 2 should be done with care.

In 1983 Van Dishoeck and Dalgarno106 stated that the Rydberg 2Σ− states
might predissociate through the 22Π or B2Σ+ states. Apart from these two,
the 14Π potential energy curve also crosses with the (D, 3)2Σ− curves, which
yields an extra predissociation process driven by spin-orbit coupling.

Figure 2.2 shows the r-dependent electronic transition dipole moments
calculated in this work. The transition moments were obtained in separate
calculations. We took care to have consistent relative signs since this is
essential in the calculation of the two-photon absorption strength [Eq. (2.25)].
The most prominent feature in the structure of the transition moments that
connect D2Σ− and 32Σ− states with other states or with each other are the
drastic changes around r = 1.5 − 3 a0.

Inspection of the coefficients of the most important configurations in the
CI wave functions shows that the electronic structure of the X2Π and 12Σ−
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Figure 2.2: Ab initio Cartesian components of the electronic transition dipole
operator for doublet states of OH/D (in au).

states do not vary significantly. However, the Rydberg 2Σ− states show a
profound structure change.

Up to r = 1.5 a0, the D2Σ− state is mainly described as a |πxπy5σ| config-
uration. From 1.5 to 2.0 a0 the contribution of the |πxπy5σ| configuration de-
creases sharply to about 50% of the initial value, while the contribution of the
|πxπy6σ| configuration rises until it is the most important contribution, and
the second most important contribution comes from the |πxπy6σ|+ |πxπy6σ|
linear combination. For interatomic distances larger than 2 a0 the situation
reverses and around 3 a0 the D2Σ− state is again described almost exclusively
by the |πxπy5σ| configuration. From 4 to 6 a0 the coefficient of this configu-
ration drops to zero and the doubly excited |3σπxπy4σ5σ| and |3σπxπy4σ6σ|
configurations become the most important.

In the short range (1-1.5 a0), the 32Σ− state is almost completely de-
scribed by the |πxπy6σ| configuration. The importance of this contribu-
tion decreases rapidly from 1.5 to 2.0 a0, while the |πxπy5σ| and |πxπy5σ| +
|πxπy5σ| configurations rise in importance. From 2-3.5 a0, the contribution
of |πxπy6σ| increases, while the contribution of the |πxπy6σ| configuration
decreases. At 3.5 a0 the 32Σ− state is described for ∼ 60% by the |πxπy6σ|
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Figure 2.3: Experimental108 and computed relative (2+1)REMPI intensities,
scaled to the (v′, v′′) = (0, 0) transition. The gray areas indicate scanned re-

gions108. Sticks: experimental S1(1) lines for OH[D2Σ−(v′, J ′)
2hν←−− X2Π(v′′, J ′′ =

3/2)] transitions, ◦: efficient detection, ⋄: rapid decay model, (v′, v′′): observed
and calculated, {v′, v′′}: predicted but not scanned. The (v′, v′′) = (3, 2) transition
is marked “very weak” in the accompanying paper60.

configuration and for ∼ 15% by the |πxπy5σ|+ |πxπy5σ| configuration. From
3.5-6 a0 the |πxπy5σ| contribution increases at the cost of the |πxπy6σ| con-
figuration until it is slightly more important (35% against 30%).

All potential energy curves and transition dipole moments are made avail-
able through EPAPS107.

2.3.2 (2+1) REMPI spectra

Figures 2.3 and 2.4 show the simulated and observed two-photon spectra for

the D2Σ−(v′)
2hν←−− X2Π(v′′) and 32Σ−(v′)

2hν←−− X2Π(v′′) transitions, respec-
tively. The sticks indicate the relative number of experimental OH+ detector

counts108 for 2Σ−(v′J ′F1)
2hν←−− X2Π3/2(v

′′, J ′′ = 3/2) S1(1) (J ′−J ′′ = 2) tran-
sitions. The circles and diamonds represent the fast ionization model [Eq.
(2.14)] and the rapid decay case [Eq. (2.15)], respectively. Both experimental



28 Chapter 2: OH: REMPI and lifetimes

(0
,0

)

(0
,1

)

(0
,2

)

(0
,3

)

(1
,0

)

(1
,1

)

(1
,2

)

(1
,3

)

{1
,4

}

(2
,0

)

(2
,1

)

(2
,2

)

(2
,3

)

(2
,4

)

(3
,1

)

{4
,3

}

{3
,3

}

(3
,4

)

two−photon energy (cm−1)

re
l. 

co
un

ts

80 000 85 000 90 000
10

−8

10
−6

10
−4

10
−2

10
0

Figure 2.4: As in Fig. 2.3, but for the OH[32Σ−(v′, J ′)
2hν←−− X2Π(J ′′ = 3/2, v′′)]

S1(1) transitions. The assignment of the (v′, v′′) = (0, 3) line was experimentally
tentative due to an overlapping water line.60

and theoretical intensities were scaled relative to the (v′, v′′)=(0, 0) transi-
tions. We find an integrated line cross section σ̂(2) = 1

105
×0.27×10−35 cm4 for

the D2Σ−(v′ = 0) ← X2Π3/2(v
′′ = 0) transition and σ̂(2) = 1

105
×0.17×10−35

cm4 for the 32Σ−(v′ = 0) ← X2Π3/2(v
′′ = 0) transition, where the factor

1
105

is the angular factor [Eq. (2.26), Table 2.3] for this transition. However,
these numbers are crude estimates due to the limited number of intermediate
states that were used. The gray areas in Figs. 2.3 and 2.4 indicate the wave-
lengths where actual scans have been performed108. Theoretically predicted
transitions which lie outside of the scanned regions are indicated with curly
brackets {v′, v′′}. In a previous combined experimental and theoretical study,
where OH/D was produced in a similar way, we estimated the vibrational
temperature to be around 1700K109, so the spectrum is simulated at that
temperature. The spectrum was simulated under the assumption that the
experimental circumstances were constant throughout the spectrum. How-
ever, this is certainly not the case due to experimental difficulties such as
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Table 2.3: Rotational factors S [Eq. (2.26)] for the

2Σ−(J ′)
2hν←−− X2Π3/2(J

′′ = |MJ ′′ | = 3/2, p′′) transi-
tions.

J ′′ p′′ O1(1) P1(1) Q1(1) R1(1) S1(1)
e 0 1

150
0 9

350
03

2
f 0 0 2

75
0 4

525

deterioration of the dyes during measurement, the use of different dyes, vari-
ations in OH production and it’s vibrational temperature, and variations in
the alignment of the molecular beam with respect to the excitation laser60,108.
This means that the relative experimental line strengths are order of magni-
tude estimates at best, so we only compare the line strengths locally. That
is, we compare line strengths of transitions that are close in energy since
we expect the effect of variations in experimental circumstances to be less
important over short energy intervals.

We see in Fig. 2.3 that the calculated line strengths follow the trends in
the observed line strengths very well. For instance, the observed increasing
line strength for the D2Σ−(v′) ← X2Π(v′′), (v′, v′′) = (2, 3) − (1, 2) − (0, 1)
transition series is predicted by both extremes of the rate model. Also,
we see that all unobserved transitions that lie in scanned regions, have a
lower predicted cross section than neighboring transitions that have been
observed. For instance, the (v′, v′′)=(4,4) and (2,2) have much lower cross
sections than the neighboring (v′, v′′)=(0,1) and (1, 1) transitions. Overall,

for the D2Σ− 2hν←−− X2Π transitions both models give equally good qualitative
correspondence with experimental intensities.

For the 32Σ− 2hν←−− X2Π transitions (Fig. 2.4) we see similar results: both
extremes predict local trends equally well and we also find that unobserved
transitions in scanned regions have much lower cross sections than observed
ones.

In Table 2.3 we give the rotronic line strength factors S relevant for the

(D/3)2Σ−(J ′, F1)
2hν←−− X2Π3/2(J

′′ = 3/2, f) transitions. In the experimental
setup (see60), a vertically polarized laser beam was put at a 90◦ angle with
the molecular beam axis so we have (φ, θ, χ) = (0, π/2, 0) [See Eqs. (2.19-
2.26)]. Furthermore, molecules were aligned with |MJ ′′| = 3/2 and we sum
over MJ ′ states. We obtain an intensity ratio for the Q1(1)/S1(1) lines of 31

2
.

This is in good agreement with the experimentally observed ratios (based on
the peak surface areas), which we estimated from Figs. 3 and 5 in Greenslade
et al. 60 to be between about 2 and 4.
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Figure 2.5: Einstein A-coefficients for radiation of the OH D2Σ−(v = 0) state to
the dissociative 12Σ−, bound X2Π, and dissociative X2Π states.

2.3.3 Lifetimes

Figure 2.5 shows the Einstein A-coefficients for the decay of the D2Σ−(v = 0)
into different continuum and discrete states. The A-coefficient for decay into
continuum states is in units of s−1/Eh while the unit of A for transition to
discrete states is s−1. Hence, we may only compare the integral over the
continuum A-coefficients with the bound-bound decay rates. As shown by
Smith110 and Allison et al.111 for the case of photodissociation, the continuum
A-coefficient for radiative decay into the X2Π state connects continuously
with the discrete part if it is divided by the density of vibrational states at
the threshold. However, since we also wish to compare radiative decay into
the continua of two different electronic states (12Σ− and X2Π), we do not
follow this procedure here.

When radiating, the Rydberg 2Σ− states decay predominantly into the
12Σ− state. A small contribution comes from the lower vibrational levels of
the X2Π ground state, while the continuum plays no important role in decay
of the (D, 3)2Σ− states. The patterns for the D2Σ− and 32Σ− state are much
alike, albeit that for the 32Σ− state, radiation into the X2Π vibrational levels
is relatively less important than for the D2Σ− state.

In Tables 2.4 and 2.5 we compare lifetimes of the Rydberg 2Σ−(J ′′ =
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Table 2.4: Lifetimes of the OH(D, 3)2Σ−(v, J = 3/2, F1) states
(τ), with the radiative (τr), the heterogeneous (gyroscopic) (τhe),
and the homogeneous (spin-orbit and spin-electronic) (τho) contri-
butions (in ns).

22Π B2Σ+ 14Π
D2Σ−(v) τr τhe τho τho τho τ

0 2.63 1.36 0.19 1.36 0.34 0.1024
1 2.88 3.00 0.39 430.01 0.18 0.1188
2 3.09 1.72 0.23 11.59 0.65 0.1537
3 3.28 4.03 0.56 6.23 3.43 0.4021
4 3.46 15.25 2.25 5.65 0.48 0.3635

32Σ−(v)
0 2.56 0.20 0.25 0.12 0.13 0.0397
1 2.03 0.98 0.69 0.10 73.42 0.0770
2 1.71 30.15 3.63 0.10 0.37 0.0773
3 1.47 28.44 22.41 0.11 0.32 0.0839

3/2, F1) states associated with the several decay processes. In order to
facilitate comparison with future experiments, we report predissociation and
radiative lifetimes separately, and we distinguish the lifetime associated with
heterogeneous processes τhe = τgy and that with homogeneous processes:
τ−1
ho = τ−1

so + τ−1
se .

As first conjectured by Van Dishoeck106, we find that predissociation is
indeed the most important line-broadening effect. The D2Σ− state predis-
sociates mainly by spin-orbit coupling with the 22Π and 14Π states. Het-
erogeneous processes are less important at these low rotational levels. The
L̂± coupling matrix element is about 1 to 2 cm−1 in the bound region and
thus contributes less than the spin-orbit coupling matrix elements which are
about twice as large (see Table 2.6). The 32Σ− state also predissociates into
the 22Π and 14Π states, but because of a stronger spin-orbit coupling with
the B2Σ+ state the lifetime of the 32Σ− state is shorter than the lifetime of
the D2Σ− state.

The 22Π, B2Σ−, and 14Π states correlate with O(1D), O(1S), and O(3P ),
respectively. All states correlate with the H(1S) limit. The lifetimes reported
here could therefore be probed experimentally by measuring the O(1D,1 S,3 P )
branching ratios.

There are no accurate measurements (yet) of the lifetime of the OH[D2Σ−

(v′′ = 0)] state. McRaven et al.66 reported an 8 ns upper limit based on the
experimental laser pulse duration. De Beer et al.64 “roughly estimate” the
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Table 2.5: As in table 2.4, but for OD.

22Π B2Σ+ 14Π
D2Σ−(v) τr τhe τho τho τho τ

0 2.59 5.84 0.23 1.37 0.51 0.1382
1 2.78 4.34 0.17 14.82 0.13 0.0710
2 2.95 9.64 0.38 2.65 55.92 0.3189
3 3.10 432.08 13.52 2.55 0.26 0.2336
4 3.24 14.12 0.53 3.37 0.43 0.2179

32Σ−(v)
0 2.65 0.61 0.24 0.12 0.12 0.0437
1 2.21 10.18 0.92 0.08 1.73 0.0701
2 1.91 9.71 44.82 0.08 0.22 0.0583
3 1.69 2.86 4.05 0.09 0.47 0.0722

Table 2.6: Spin-orbit (〈f |Ĥso|i〉) and

〈f |L̂+|i〉 coupling matrix elements rele-
vant for predissociation of the Rydberg
2Σ− states. The matrix elements were
computed at the crossing of the Ryd-
berg states with the dissociative states.

〈f |Ĥso|2Σ−〉 (cm−1)
〈f | D2Σ− 32Σ−

22Π 4.50 2.50
B2Σ+ 1.10 4.60
14Π(Σ = 3

2
) 4.00 4.02

〈f |L̂+|2Σ−〉 (Eh)
〈f | D2Σ− 32Σ−

22Π 0.048682 0.080789
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lower lifetime limit to be 5 × 10−10[J(J + 1)]−1, for the D2Σ−(v = 0 . . . 2)
states, which yields about 31.75 ps for the J = 3/2 state. Here we find a
lifetime of 102.4 ps which lies in between the current experimental limits,
and within a factor of 3 from De Beer’s estimate.

2.4 Summary and conclusions

We computed a new set of high-quality potential energy curves for OH/D,
up to and including the Rydberg 32Σ− state. Vibrational energy splittings
and rotational constants for the D2Σ− and 32Σ− states based on these ab

initio potentials show excellent agreement with experiment. The agreement
is improved after a minor scaling of the potentials. We also report the vi-
brational constants Gv and rotational constants Bv for a set of unobserved
levels and for the OD isotope. A new set of transition dipole moments for
the doublet states of OH/D was computed and used in a calculation of the
observed (2+1)REMPI spectra reported in Greenslade et al. 60 . To obtain
the spectra, we include the effect of the 12Σ− intermediate state by using the
Seideman-Miller discrete variable representation-absorbing boundary condi-
tion method, which was originally derived for scattering and photodissocia-
tion calculations. The reason some transitions were scanned but not observed
is that the two-photon cross section of these transitions is much lower than
those of the observed transitions. Furthermore, relations were derived for
the relative line strengths for aligned molecules at different experimental ge-
ometries and a good numerical agreement with experiment is obtained. We
compute the radiative and predissociative lifetimes of the Rydberg (D, 3)2Σ−

states including the effect of spin-orbit coupling, spin-electronic-, and gyro-
scopic predissociation. We find that predissociation occurs much faster than
radiation, and we find the total lifetime of the D2Σ−(v = 1, J = 3/2, F1)
state to be 102.4 ps, which lies in between currently known experimental
limits.





CHAPTER 3

Theoretical transition probabilities for the OH Meinel

system

We present a new potential energy curve, electric dipole moment func-
tion, and spin-orbit coupling function for OH in the X2Π state, based on
high-level ab initio calculations. These properties, combined with a spec-
troscopically parametrized lambda-type doubling Hamiltonian, are used to
compute the Einstein A coefficients and photoabsorption cross sections
for the OH Meinel transitions. We investigate the effect of spin-orbit
coupling on the lifetimes of rovibrationally excited states. Comparing our
results with earlier ab initio calculations, we conclude that our dipole
moment and potential energy curve give the best agreement with exper-
imental data to date. The results are made available via the EPAPS
system.

JCP 126, 114314 (2007); PRL 95, 013003 (2005)

3.1 Introduction

The emission lines arising from rovibrationally excited hydroxyl radicals in
the electronic ground state were first identified in the late 1940’s by Meinel112

in the airglow emission spectrum of the night sky. The Meinel emission lines
have been used as a tool to study many phenomena, including atmospheric
temperature113, chemical lifetime of atmospheric OH114, atmospheric grav-
ity waves115–117, extraterrestrial atmospheres118,119, and stellar oxygen abun-
dance120.

35
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Recently, we took part in a project121,122 where the lifetime of vibra-
tionally excited OH was for the first time measured directly by electrostati-
cally decelerating and trapping OH radicals in the excited X2Π[v = 1, J =
3/2, f(+)] state, and following the exponential decay in time. We computed
the lifetime of excited OH based on a new ab initio dipole moment, took
into account spin-orbit coupling and lambda-type doubling, and found good
agreement with experiment. In the present work we extend our calculations
to higher rovibrational levels, and investigate the effect of including OH bond
length dependent spin-orbit coupling. We compare our dipole moment func-
tion with several earlier ones, and report a new set of Einstein A coefficients
and photoabsorption cross sections for the OH Meinel system.

Experimentally, the emission rates are usually determined indirectly us-
ing nuclear wave functions computed from a parametrized potential, and
an electric dipole moment function which is fitted so that relative emission
rates arising from different excited levels are reproduced. The electric dipole
moment function is generally expanded in powers of the interatomic dis-
tance (r − re)

n, where re is the equilibrium distance, and n ≥ 1. Such a
procedure was first followed by Shklovskii123, Chaimberlain and Smith124,
and Kvifte125. They all took a linear dependence (n = 1) for the electric
dipole moment functions. Heaps and Hertzberg126, and Wallace127 used a
quadratic function and Garvin et al.128 a cubic function. In 1962, Fergu-
son and Parkingson129 used a Morse potential, combined with experimental
data from Krassovsky130 to fit a fifth order polynomial for the electronic
dipole moment function. Murphy131 improved on this model in 1971 using
new experimental data. From 1982 onwards, the standard emission rates
in spectroscopic databases132 were those reported by Gillis, Goldman, and
Coxon133–135, which were essentially based on a calculation by Mies136. In
1989, Turnbull and Lowe137 reported emission rates based on a new empir-
ical dipole moment function. However, it was recently noted by Cosby and
Slanger138, that the experimental data of Krassovsky et al.139 underlying part
of that fit is seriously flawed by modern standards. A new set of emission
rates was published by Goldman et al.140 in 1998, based on a Rydberg-
Klein-Rees (RKR) potential of Nelson141. The dipole moment function was
obtained by combining an experimentally determined electric dipole moment
function of Nelson142 with an ab initio dipole moment of Chackerian140. An
empirical spin-orbit coupling function by Coxon and Foster143 was also in-
cluded in that calculation. It was recently pointed out by Cosby et al.144

and Colin et al.104 that the spectroscopic constants used to generate the en-
ergy levels in Goldman’s calculations are flawed at higher vibrational (v > 3)
and rotational levels (J > 19/2), producing difference with experiment up to
0.14 cm−1. Both authors performed an improved fit of existing spectroscopic
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data by Abrams et al.145. The main disadvantage of experimentally deter-
mined electric dipole moment functions is that the regions outside the range
of experimentally probed internuclear distances are badly described. Thus,
extrapolation to higher rovibrational levels, which probe larger and smaller
interatomic distances, is hardly possible.

The first extensive ab initio calculation of emission rates was done by
Mies136, who used the electric dipole moment function of Stevens et al.146

and an RKR potential of Albritton136. Extensive ab initio calculations of the
electric dipole moment function of OH in the electronic ground state have
been performed in the 1980’s by Werner et al.147 and Langhoff et al.148,149.
In 1986, Langhoff, Werner, and Rosmus150 reported theoretical emission co-
efficients which were computed using a shifted version of the dipole moment
function of Werner147. Nuclear wave functions were computed using an RKR
potential, extended with ab initio calculations to describe the potential at
large internuclear separations, and the Hill and van Vleck approximation was
applied151 to compute the transition probabilities. In all ab initio calcula-
tions and experimental fits mentioned here, the lambda-type doubling was
neglected. Spin-orbit coupling effects were based on spectroscopic data and
taken independent of the OH-distance, except in the calculation by Goldman
et al.140.

3.2 Theory

3.2.1 Hamiltonian and basis functions

The nuclear Hamiltonian for the OH molecule in the X2Π state can be written
as:

H =
−~

2

2µr

∂2

∂r2
r + Trot + V (r) + Hso(r) + HΛ, (3.1)

where the first term is the radial part of the nuclear kinetic energy opera-
tor with r the internuclear distance, µ is the reduced mass, and Trot is the
rotational Hamiltonian for OH in the X2Π state:

Trot =
1

2µr2

[

J2 + S2 + Lz(2Sz + Lz) − 2Jz(Sz + Lz)

- (J−S+ + J+S−)] , (3.2)

where J is the total angular momentum operator apart from nuclear spin,
Lz the body-fixed z-component of the electronic orbital angular momentum
operator L, and S is the the electronic spin operator. The full rotation
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Hamiltonian [given by (J−L−S)2] also contains terms that couple the X2Π
state with ∆ and Σ states. These contributions are treated by the effective
lambda-type doubling Hamiltonian HΛ, in the unique perturber approxima-
tion152,153. The third term in Eq. (3.1) is the electronic potential energy
curve in the clamped-nuclei approximation and Hso(r) is the r-dependent
spin-orbit coupling operator.

We represent the Hamiltonian in a Hund’s case (a) basis with basis func-
tions:

|JMJ
2Π|Ω|p〉 = 1√

2
[|JMJ

2ΠΩ〉 + η(−1)J−S|JMJ
2Π−Ω〉], (3.3)

where

|JMJ
2ΠΩ〉 =

√

2J + 1

4π
D

(J)∗
MJΩ(α, β, 0)|2ΠΩ〉. (3.4)

Here, J is the total angular momentum quantum number, MJ the projection
of J on the laboratory-frame Z-axis, Ω = ±1/2,±3/2 the total electronic
angular momentum projection on the molecular axis, and η = ±1 is the
eigenvalue of the parity operator. We also introduce here the spectroscopic
parity p = η(−1)J−S, and we label wave functions with parity e or f for

p = 1 or p = −1, respectively. Furthermore,
√

(2J + 1)/4πD
(J)∗
MJΩ(α, β, 0) is

a two-angle normalized Wigner D function, and |2ΠΩ〉 denotes the electronic
basis functions.

Spin-orbit coupling lifts the degeneracy of states with different |Ω|. The
transition probabilities depend on spin-orbit coupling because it affects the
rovibronic energy level structure of the molecule and alters the shape of
the nuclear vibrational wave functions. Spin-orbit coupling can be taken
into account, either by computing the electronic expectation values of the
r-dependent spin-orbit coupling operator Ĥso(r), or by using a parametrized
Hamiltonian matrix in the Hund’s case (a) basis, of which the matrix elements
Hso

|Ω|,|Ω′| are given by153:

Hso
3/2,3/2 =

Av

2
+

ADv

2
(z − 1) +

AHv

4
[3(z − 1)2 + z] (3.5)

Hso
1/2,3/2 =

z1/2

2
AHv

(3.6)

Hso
1/2,1/2 = −Av

2
+ −ADv

2
(z + 1) +

AHv

4
[3(z + 1)2 + z], (3.7)

where z = (J + 1/2)2 − 1 and the An are spectroscopic constants, given in
Table 3.1. The spectroscopic spin-orbit Hamiltonian of Eq. (3.7) reproduces
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the energy level structure, but does not affect the shape of nuclear wave func-
tions, since terms dependent on r are averaged out. Thus, the Frank-Condon
overlap between different nuclear states is affected when Eqs. (3.5)-(3.7) are
used in stead of the r-dependent spin-orbit coupling. The calculation of the
r dependent spin-orbit coupling is described in section 3.2.2.

The lambda-type doubling Hamiltonian lifts the degeneracy of states with
different parity, and it is parametrized by spectroscopic constants. Its matrix
elements HΛ

|Ω|,|Ω′| are given by153:

HΛ
3/2,3/2 =

z

2
[qv + x(qDv

+ xqHv
)] (3.8)

HΛ
1/2,3/2 = z1/2

{

1 ∓ (J + 1/2)

2
[qv + x(qDv

+ xqHv
)] +

1

4
(pv + xpDv

)

}

(3.9)

HΛ
1/2,1/2 =

z + 2 ∓ 2(J + 1/2)

2
[qv + x(qDv

+ xqHv
)] +

1 ∓ (J + 1/2)

2
(pv + x)

+
Av(pv + xpDv

)

8Bv

, (3.10)

where pv and qv are lambda-type doubling constants, Bv rotational constants
and x = J(J +1). When two signs are given, the upper sign refers to e-states
and the lower sign to f -states. We note that the last term in Eq. (3.10) is
often labeled ov.

3.2.2 Electronic structure and nuclear wave functions

The calculation of the electronic Born-Oppenheimer potential with the MOLPRO79

program package was described earlier by us155. Briefly, the electronic wave
functions are obtained from an internally contracted multi-reference con-
figuration interaction calculation with single and double excitations (MRS-
DCI)80,81. The orbitals were obtained from a complete active space self
consistent field82,83 (CASSCF) calculation with an extended active space
consisting of five σ, two πx, and two πy orbitals, obtained from a large (aug-
cc-pV6Z) one-electron basis set of Dunning86. Although our potential energy
curve already gives accurate vibrational transition frequencies, with devia-
tions from experiment on the order of 0.1%, we decided to further increase
the accuracy by replacing the potential with a scaled potential Vsc(r) given
by

Vsc(r) = c3V (c0 + c1r + c2r
2). (3.11)

Here, c1, c2, and c3 are nonlinear scaling parameters, fitted to minimize
the difference between the experimental and calculated vibrational levels Gv.
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Table 3.1: Spectroscopic constants154 in cm−1 used in this work, see Eqs. (3.5)-(3.13).

v A 104AD 105AH B q 104qD 108qH p 104pD

0 −139.2729 −3.1626 −0.0285 18.550404 −0.038770 0.14693 −0.24306 0.235608 −0.2483
1 −139.5410 −2.8334 −0.0275 17.838640 −0.037013 0.14385 −0.22756 0.225097 −0.2548
2 −139.8057 −2.4002 −0.0285 17.136383 −0.035254 0.14181 −0.22578 0.214261 −0.2555
3 −140.0608 −1.9303 −0.0248 16.440990 −0.033471 0.13999 −0.22273 0.203253 −0.2604
4 −140.2964 −1.5181 −0.0255 15.749203 −0.031653 0.13811 −0.19475 0.191693 −0.2684
5 −140.4982 −1.1026 −0.0247 15.056955 −0.029763 0.13396 −0.10096 0.179474 −0.2806
6 −140.6433 −0.3809 −0.0238 14.359026 −0.027833 0.13435 −0.07881 0.166648 −0.3187
7 −140.6984 0.4120 −0.0230 13.648656 −0.025786 0.13308 0.00000 0.152240 −0.3574
8 −140.6137 2.4558 −0.0222 12.917024 −0.023621 0.13683 0.00000 0.136138 −0.4360
9 −140.3060 5.8954 −0.0214 12.152199 −0.021267 0.14147 0.00000 0.117007 −0.5361
10 −139.6458 11.7745 −0.0206 11.337856 −0.018522 0.12778 0.00000 0.093326 −0.6915



3.2. Theory 41

Since the vibrational levels are not sensitive to the position of the minimum of
the potential, re, we introduce a shift c0 so that re matches the experimentally
determined value154 of 1.8324 a0. This method ensures that high quality
nuclear wave functions are obtained for all rotational levels.

We compute the dipole moment as the expectation value of the electronic
dipole operator for the MRSDCI wave functions. The r-dependent spin-orbit
coupling is obtained as the expectation value of the Breit-Pauli spin-orbit
Hamiltonian, using wave functions obtained from MRSDCI calculations. The
orbitals were obtained from a CASSCF calculation, using the aug-cc-pVQZ
one-electron basis set and an active space formed by one πx, one πy, and
six σ orbitals. The potential energy curve, spin-orbit coupling, and electric
dipole moment function are computed at 30 points ranging from 1 to 16 a0,
and are made available via the EPAPS156 system.

The potential energy curve and electronic properties are interpolated us-
ing the reproducing kernel Hilbert space method157 on an equidistant grid
of 751 points between 1 and 16 a0. The nuclear wave functions are obtained
with the sinc-function DVR method100,101 employing this grid. The lambda-
type doubling Hamiltonian is parametrized separately for every vibrational,
rotational, and parity level, so we compute a new Hamiltonian matrix for
every rovibrational- and parity level. Furthermore, since the rotational and
lambda-type doubling part of the Hamiltonian couple states of different Ω,
the dimension of each Hamiltonian matrix doubles to 1502. After each diago-
nalization, 34 (17 for each Ω) or less bound state eigenfunctions are obtained.
Only two of the eigenfunctions correspond to the rovibronic level for which
the Hamiltonian was set up. These can be written as:

|ψJMJ

vFnp〉 =
∑

|Ω|
r−1f

J |Ω|
vFnp(r)|JMJ

2Π|Ω|p〉, (3.12)

where the r−1fΩ
vFnp(r) are the vibrational wave functions. The functions

|ψJMJ

vFnp〉 are linear combinations of states with |Ω| = 3/2 and |Ω| = 1/2,
such that, especially for higher rotational levels, Ω is not a good quantum
number anymore. However, in the low-J limit, Ω is an approximately good
quantum number, and a wave function is labeled with F1 when it corresponds
to |Ω| = 3/2 and with F2 when it corresponds with |Ω| = 1/2.
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3.2.3 Line intensities and Einstein A-coefficients

The line intensity Sul(T ) in cm2/(s·molecule) for a photoabsorption transition
|u〉 ← |l〉 from a lower state |l〉 to an upper state |u〉 is given by132:

Sul(T ) =
e−El/kbT − e−Eu/kbT

Q(T )
Iaglσ̄ul(ω0). (3.13)

Here, the exponentials are Boltzmann factors for lower and upper states at
temperature T , Q(T ) is the molecular partition function, gl the degeneracy
of the lower state, and Ia = 0.997473 the 16OH isotope abundance. The tran-
sitions are labeled with u and l, which denote the set of quantum numbers in
upper and lower state that are resolved in experiment or calculation. Here,
we have u = {v, J, Fn, p} and l = {v′, J ′, Fn′ , p′}. The integrated line pho-
toabsorption cross section σ̄(ω0) (cm2/s) at the angular transition frequency
ω0 (s−1) is given by

σ̄ul(ω0) =
4π2αω0

(2J ′ + 1)e2

∑

MJMJ′

|〈ψJMJ

vFnp|ε · µ|ψJ ′MJ′

v′Fn′p′〉|2, (3.14)

where we average over lower, and sum over upper degenerate states. Fur-
thermore, α is the fine-structure constant, e the elementary charge, ε the
photon polarization vector and µ the electronic dipole operator given by
µ

(1)
q =

∑

t d
(1)
t D

(1)∗
qt (α, β, 0), where d is the electronic dipole operator in the

molecular frame. Choosing the laboratory Z-axis along the photon polari-
zation, integrating over angles α and β, and completing the sum over MJ

and MJ ′ , gives

σ̄ul(ω0) =
4π2αω0

3(2J ′ + 1)e2
|〈ψJ

vFnp||d(1)||ψJ ′

v′Fn′p′〉|2, (3.15)

where the reduced matrix element reads

〈ψJ
vFnp||d(1)||ψJ ′

v′Fn′p′〉 =

(2J + 1)1/2
∑

Ω=1/2,3/2

〈JΩ10|J ′Ω〉〈fJ |Ω|
vFnp|d

(1)
0 |fJ ′|Ω|

v′Fn′p′〉r. (3.16)

The Einstein A coefficient in s−1 for the spontaneous emission process |u〉 →
|l〉 is connected to the line intensity by

Sul(T ) =
e−El/kbT − e−Eu/kbT

Q(T )

Iaπ
2c2gu

ω2
0

Aul, (3.17)
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where c is the speed of light, and it follows that Aul is given by

Aul =
2J ′ + 1

2J + 1

ω2
0

c2π2
σ̄ul(ω0). (3.18)

The radiative lifetime τu (in s) of an upper state |u〉 reads

τ−1
u

=
∑

l

Aul, (3.19)

where the sum is over al states |l〉 with El < Eu. Finally, we note that line
strengths S are often given in cm2/(cm · molecule), in stead of cm2/(s · molecule).
In that case ω0 in Eqs. (3.13) and (3.14) must be replaced by the wave number
ν0 given by: ν0 = ω0/(100 · 2πc).

3.3 Results

3.3.1 Potential energy curve

In Table 3.2, the computed and experimental vibrational band origins Gv are
shown. The coefficients we found for the scaling procedure [see Eq. (3.11)]
are shown in Table 3.3. Even though the scaling has a small effect on the
shape of the potential [the case of no scaling is equivalent to coefficients
(c0, c1, c2, c3) = (0, 1, 0, 1)], the reduction in error is large. The relative errors
are reduced by at least two orders of magnitude with respect to the fully
ab initio potential, yielding relative errors on the order of 10−5 or less. The
difference between experimental and computed vibrational levels is 0.14 cm−1

for v = 1, and less than 0.07 cm−1 for v = 2 . . . 10. This is about an order of
magnitude more accurate than the vibrational levels computed by Langhoff
et al.148 who used the RKR potential of Coxon and Foster158, extended with
a scaled ab initio potential to describe the potential at large interatomic
separations. In total, we find 17 bound vibrational levels, where Langhoff et

al. find 16. Our ab initio potential energy curve has an re value of 1.8334 a0,
which differs only by 9.8 × 10−3 a0 from the experimental value154 of 1.8324
a0 After fitting c1, c2, and c3, but keeping c0 = 0, the potential has a slightly
shifted re value of 1.8314 a0, yielding a c0 value of −1.0 × 10−3 a0.

3.3.2 Dipole moment function

In Fig. 3.1, five dipole moment functions from the literature are compared
with ours. The dipole moment functions are in general very similar except in
the outer regions where the fitted curves of Murphy131 and Nelson142 decrease
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Table 3.2: Experimental and computed vibrational energy levels Gv in
cm−1. Computed results are shown for the scaled potential Vsc(r) [see Eq.
(3.11)] and for the original ab initio potential V (r). The coefficients are
given in Table 3.3.

Exp. ab initio scaled
Gv

154 Gv err. % Gv err. %
v
0 0 0 0 0. 0
1 3569.6415 3573.2426 0.101 3569.4944 −4.121 × 10−3

2 6973.6790 6981.1031 0.107 6973.6800 1.501 × 10−5

3 10214.0371 10225.0300 0.108 10214.0972 5.884 × 10−4

4 13291.8106 13305.9995 0.107 13291.8158 3.873 × 10−5

5 16207.1007 16224.1848 0.105 16207.1571 3.477 × 10−4

6 18958.7928 18978.0894 0.102 18958.7717 −1.114 × 10−4

7 21544.2632 21565.0051 0.096 21544.1885 −3.468 × 10−4

8 23958.9883 23980.2775 0.089 23959.0303 1.754 × 10−3

9 26196.0203 26216.2050 0.077 26196.0135 −2.607 × 10−5

10 28245.2835 28262.3640 0.060 28245.2872 1.308 × 10−5

Table 3.3: Coefficients for
the scaled potential Vsc(r) in
Eq. (3.11).

scaling constants
c0 −9.84300000 × 10−4

c1 1.00512315
c2 −2.20223846×10−3

c3 1.00389925

too fast as a function of r. This is a consequence of the functional form used to
determine these functions: a fifth order polynomial for Murphy’s, and a third
order polynomial for Nelson’s electric dipole moment function. Nelson et al.

state that their electric dipole moment function is valid between 1.32 and
3.33 a0, the classical turning points of the v = 9 level. The dipole moment
computed in this work follows Nelson’s empirical function most closely in
the inner region. This is shown more clearly in Fig. 3.2, where we plot
the difference between Nelson’s dipole moment function and a number of ab

initio computed functions. It can be seen that in the inner region, both the
dipole moments by Langhoff and by Werner cross the empirical function,
whereas ours remains slightly above the empirical one. Using a cubic spline
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Figure 3.1: Dipole moment functions of OH compared. Ab initio points are
connected here by straight lines, in our calculations we use an interpolation scheme.
This work (⊙), Langhoff et al.149(1989) (¤), Langhoff et al.148(1986) (×), Werner
et al.147 (⋆), experimental curve by Nelson et al.142 (- -), and experimental curve
by Murphy131 (−.). The curve of Murphy is determined up to a constant, and was
shifted up by about 0.85 ea0 for graphical reasons.

interpolation procedure, we find that the maximum of our dipole moment
lies at exactly the same interatomic distance as Nelson’s: 2.300 a0, whereas
Langhoff’s electric dipole moment function has a maximum at 2.2850 a0 and
Werner’s at 2.2670 a0. A scaled and shifted form of Werner’s dipole moment
function was used in the last extensive fully ab initio calculation on the OH-
Meinel system in 1986148.

One of the most stringent tests on the quality of the ab initio calculated
dipole moment function is comparing vibrationally averaged dipole moments
with the very accurate measurements of Peterson et al.159. The experimen-
tally determined dipole moments are accurate up to 10−5 ea0 for v = 0 and
v = 1 and 10−4 ea0 for v = 2. In all references cited here, the comparison of
experimental with ab initio computed dipole moments was done after shift-
ing and/or scaling the ab initio dipole moment functions. Here, we compute
the vibrationally averaged dipole moments without any scaling of the dipole
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Figure 3.2: Difference between ab initio electric dipole moment functions and
the “experimental” dipole moment function of Nelson et al.142. This work (⊙),
Langhoff et al.149(1989) (¤), and Werner et al.147(⋆).

moment function. For comparison, we also computed this property using
some previously published dipole moment functions. The results are shown
in Table 3.4. It can be seen that our dipole moment function yields values in
very close agreement with the experimental results, with differences between
experiment and ab initio results of about 0.0020 ea0. for the v = 0 and v = 1
levels, and 0.034 ea0 for v = 3.

3.3.3 Lifetimes

In the first and second column of Table 3.5 we show the lifetime of the
OH(v = 1, J = 3/2, F1, p) states, which are the only states of which the
lifetimes have been determined directly by experiment122. The lifetimes have
been computed using different dipole moment functions and methods and are
compared with the two best-known current values: the direct measurement of
Meerakker et al.122, and the value which can be extracted from the HITRAN
2004 database Eqs. (3.17) and (3.19). The HITRAN values we use here are
ultimately based on the calculation by Goldman140.
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Table 3.4: Computed and experimental vibra-
tionally averaged dipole moments of OH in ea0.

v Exp.a Present L89b WRRc

0 0.65120(4) 0.6527 0.6570 0.6457
1 0.65411(6) 0.6561 0.6598 0.6481
2 0.6550(4) 0.6582 0.6611 0.6490
3 0.6585 0.6605 0.6479
4 0.6567 0.6578 0.6446
5 0.6522 0.6524 0.6386
6 0.6444 0.6437 0.6291
7 0.6324 0.6311 0.6157
8 0.6153 0.6136 0.5974
9 0.5919 0.5901 0.5731

a Petersonet al.159. Converted from Debye
using 1 Db = 0.39343031369 ea0.

b Langhoff et al.149

c Werner et al.147

The dipole moment functions by Langhoff et al. (L86), Murphy (M71),
and Werner et al. (WRR) give lifetimes which differ from the experimental
values by about 15 to 30 ms. The dipole moment of Langhoff (L89), Nelson
(N90), and from this work all give values which are within the experimental
errors. Since our dipole transition moment is slightly higher than the ex-
perimental values in Table 3.4, we also compute the lifetimes after scaling
our dipole (µsc). The scaling factor (0.9966) is the avarage ratio between the
experimental and our ab initio expected values for the dipole moment. The
effect is an increase in lifetime of about 0.41 ms.

To investigate the effect of scaling the potential, we also compute the
lifetimes using wave functions from our potential without scaling it (labeled
nosc). We also compute the lifetimes using our wave functions and the tran-
sition frequencies taken from HITRAN (labeled ωH) to distinguish overlap
effects from energy level effects. The difference in lifetime for these two me-
thods is about 0.05 ms. This indicates that rovibrational wave functions are
well represented in our calculation. Thus, we expect the error in lifetimes
caused by the error in calculated transition frequencies to be on the order of
0.05%.

In Fig. 3.2, we show the r-dependent spin-orbit coupling Hso(r). The
spin-orbit coupling matrix element rises steeply between 2.8 and about 5.5
a0. At 7.0 a0 the spin-orbit coupling is within one cm−1 of its asymptotic
value, −100.74 cm−1 at 16 a0. The vibrationally averaged spin-orbit splitting
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Figure 3.3: r-dependent spin-orbit coupling computed in this work.

is 135.48 cm−1 for v = 0, which is close to the experimental spectroscopic A
constant shown in Table 3.1. From v = 1 to v = 8 the vibrationally averaged
spin-orbit splitting increases from 135.79 to 137.09 cm−1. For v = 9 − 10
the splitting decreases again to 136.63 cm−1 for v = 10. This behavior is
consistent with the spin-orbit A constants, shown in Table 3.1.

In the third and fourth column of Table 3.5 we compare the lifetimes
computed using the r-independent spin-orbit Hamiltonian [Hso

|Ω|,|Ω′|, Eq. (3.7)]

with the values obtained using Hso(r). Since the transition frequencies are
slightly different when Hso

|Ω|,|Ω′| is used in stead of Hso(r), we also compare
with the ωH calculation. We conclude that replacing the r-dependent spin-
orbit coupling with the parametrized Hamiltonian decreases the computed
lifetime of OH[X2Π(v = 1, J = 3/2)] by about 0.001 ms. Calculations for
higher rovibrational levels show that this effect decreases exponentially as
the rotational or vibrational level increases. The effect that the approximate
Hso

|Ω|,|Ω′| Hamiltonian yields better results for higher excited states can be ex-
plained by the notion that higher excited rovibrational states probe larger
internuclear distances, where the spin-orbit coupling becomes constant. Also,
higher excited vibrational levels have more kinetic energy, so the approxima-
tion of a vibrationally averaged spin-orbit coupling becomes better at higher
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Table 3.5: Lifetime of the OH(v = 1, J = 3/2, F1, p)
states, computed using various dipole moment functions
and methods.

Exp. e(−) f(+) error bars
Directa 59.0 ±2 ms
HITRANb 56.6113 56.6244 ±10 − 20%

Hso(r) Hso
|Ω|,|Ω′|

Calc. e(−) f(+) e(−) f(+)
µsc

c 57.2246 57.2253 57.2235 57.2242
presentd 56.8364 56.8371 56.8354 56.8360
nosce 56.8835 56.8842 56.8824 56.8831
ωH

f 56.8359 56.8366 56.8272 56.8278
N90g 55.7004 55.7011 55.6989 55.6996
L89h 57.7759 57.7766 57.7742 57.7749
WRRi 71.6343 71.6352 71.6319 71.6328
L86j 81.3144 81.3154 81.3104 81.3114
M71k 85.6512 85.6522 85.6480 85.6490

a Experiment by Meerakker et al.122

b Computed from the HITRAN 2004160 database.
c Scaled potential and scaled dipole moment.
d This work, using the scaled potential.
e This work, using the ab initio potential.
f This work, using HITRAN transition frequencies.
g Fitted dipole moment function by Nelson.142
h Ab initio dipole moment function by Langhoff et

al.149(1989).
i Ab initio dipole moment function by Werner et al.147

j Ab initio dipole moment function by Langhoff et al.148

(1986).
k Fitted dipole moment function by Murphy131 (1971).

excited rovibrational states. Using our transition dipole moment and scaled
potential energy curve, we computed a total of 42356 photoabsorption cross
sections and Einstein A coefficients, which can be retrieved via the EPAPS156

system in ASCII format. The file contains the cross sections σ̄ul as defined
in Eq. (3.14), the Einstein A coefficients defined in Eq. (3.19), the full set
of quantum numbers {v, J, Fn, p} for upper and lower state, the transition
energy and the energy of the lower state with respect to the dissociation
energy De. We include vibrational levels v = 0 − 10 and rotational levels
up to and including J = 121/2. The potential energy curve, electric dipole
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Figure 3.4: Rovibrational line strengths for all transitions up to and including
v = 10, J = 121/2, computed at a temperature of 296 K.

moment function and spin-orbit coupling function are also included in the
EPAPS data.

As an illustration, we plot the line intensity Sul for all rovibrational
bands of OH in the X2Π state in Fig. 3.4, at a temperature of 296 K. The
line intensities are computed using Eq. (3.13), where the partition function
Q(296) = 80.362 is taken from the HITRAN database.

3.4 Conclusion

We computed a new, accurate ab initio potential energy curve, electric dipole
moment function, and spin-orbit coupling function for OH(X2Π). Both the
calculated permanent vibrationally averaged dipole moments and spin-orbit
couplings are computed with unprecedented precision. The effect of the OH
bond length dependence of the spin-orbit coupling is investigated and we
conclude that the maximum variation in lifetimes is on the order of 0.001
ms (about 0.0001%). The effect decreases exponentially as the rotational or
vibrational quantum number increases. The effect of lambda-type doubling
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on the mixing of states with different Ω quantum number is incorporated
for the first time. We report a new set of accurate photoabsorption cross
sections and Einstein A coefficients, available via the EPAPS156 system.

3.4.1 Acknowledgements

We are greatly indebted to Professor Philip Cosby for providing us with the
details of the spectroscopic Hamiltonian and the preprint of his paper.

Appendix: Einstein A and B coefficients, De-

generacy, Line intensity and HITRAN

In the course of this work, we found an error in a preliminary version of the
HITRAN 2004 database, which could be traced back to an overcounting of
spin- and electronic degeneracies in the equation for the line intensity. Here,
we summarize a derivation of Eqs. (3.13) and (3.17) and discuss the effects
of (near) degeneracy on the line intensity.

Einstein A and B coefficients

The chance to find a particle in a fully specified single quantum state |α〉 at
a given temperature is given by the Boltzmann distribution:

Pα =
e−βEα

Q(T )
, (3.20)

where β = 1/kbT , Q(T ) =
∑

α e−βEα the internal partition sum of the
molecule and Eα is the total energy of the state. The chance to find a
particle with some energy En is given by:

PEn
=

∑gn

i=1 e−βEn

Q(T )
=

gne
−βEn

Q(T )
, (3.21)

where the sum runs over gn linear independent state functions with eigenvalue
En. In spectroscopy, often only states which differ in energy are resolved.
Consider the transition

|2〉 hν←− |1〉, (3.22)
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between states of energy E1 and E2. The rate of state |2〉 production is given
by Einstein’s differential equationa:

∂N2

∂t
= −∂N1

∂t
= N1WB12 − N2WB21 − N2A21, (3.23)

where W is the energy density of radiation at the transition frequency ω in
J/(m3s−1). Solving this equation for thermal equilibrium, using Boltzmann
statistics and Planck’s radiation law, the following relations are obtained95:

g1/g2B12 = B21 m3/(Js2) (3.24)

A21 = ~ω3/(π2c3)B21 s−1, (3.25)

where we are using rationalized MKS (Giorgi) units.

Line Intensity

Consider the change of intensity dĪ of a beam traversing a dilute gaseous
sample of volume V as a function of traversed length dz:

dĪ = −(N1B12 − N2B21)
~ω

V c
ĪΦ(ω)dz, (3.26)

where Φ(ω) is the frequency normalized line profile of the transition, Ī = cW
and N1 and N2 are the number of particles respectively in states |1〉 and |2〉
in the volume traversed by the beam. Comparing this equation with Beer’s
law:

dĪ(z) = −κ(ω)Ī(z)dz, (3.27)

we get:

κ(ω) = (N̄1B12 − N̄2B21)
~ω

c
Φ(ω) (m−1), (3.28)

where the number density N̄i = Ni/V depends on temperature according to
the Boltzmann distribution:

N̄i = N̄gie
−βEi/Q(T ) i = 1, 2. (3.29)

Notice that the unit of Φ is s. The HITRAN line intensity is defined as the
integrated absorption coefficient divided by the total number density N̄ :

Sobs
2←1(T ) = N̄−1

∫

κ(ω)dω (s−1m2/molecule). (3.30)

aThe Einstein absorption B12 coefficient for a transition 2 ← 1 is labeled in the order
1,2. This is opposite of the spectroscopic convention, which is to use the upper state as
the first label.
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For a narrow transition Φ(ω) is replaced by the Dirac delta function, centered
at the transition frequency ω0, and we get:

Sobs
2←1(T ) = N̄−1(N̄1B12 − N̄2B21)

~ω0

c
. (3.31)

The quantum mechanical expression for the Einstein B12 coefficient reads:

B12 =
π

ǫ0~
2

1

g2

g1
∑

n1=1

g2
∑

n2=1

|〈2|ε · µ|1〉|2, (3.32)

where we sum over initial, and avarage over final states. Combining Eq.
(3.24) with Eqs. (3.29), (3.31) and (3.32), using the expression for the fine-
structure constant α = e2/(4πǫ0~c), and introducing the isotope abundance
Ia, Eqs. (3.13) and (3.14) can be derived. With the help of Eq. (3.25), Eq.
(3.17) can be written down as well.

(Near) Degeneracy

So far we discussed transitions between states which are defined up to de-
generacy. That is, the transition strength Sobs

2←1 is labeled by all quantum
numbers of state |1〉 and |2〉 that determine the total energy and g2 repre-
sents the number of degenerate (unresolved) states of energy E2. Often ex-
perimental conditions are such that transitions between a number of nearly
degenerate states are observed simultaneously. If we make the approximation
that nearly degenerate states have the same energy Ef and Ei respectively,
the nearly degenerate states will be equally occupied and we can still use Eq.
(3.17) to compute the observed line intensity:

Sobs
ul

(T ) =
e−βEu − e−βEl

Q(T )

π2c2Iagu

ω2
0

Aul, (3.33)

with the difference that gu now corresponds to the total number of unresolved
degenerate and nearly degenerate final states. Another way of stating this
is that gu is determined by all quantum numbers of the upper state that do
not label the transition Sobs

ul
.

The type and number of different quantum numbers one can assign to
a state function depend directly on the symmetry properties of the system.
However in general we can distinguish electronic, vibrational, spin, parity,
and rotation-like quantum numbers, in various coupling schemes. We will
consider as example two cases of experimental resolution.
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Hyperfine structure fully resolved If the hyperfine structure is fully
resolved, the degeneracy factor is given by:

gu = g2 = (2F ′ + 1), (3.34)

where F ′ is the total angular momentum in the upper state, including nuclear
spin. Here, the transition is specified up to all quantum numbers except the
total conserved angular momentum projection quantum number MF ′ .

Hyperfine structure not resolved Suppose hyperfine structure is not
resolved in a spectrum, and the transitions are specified up to the J quantum
number, which includes all rotation except nuclear spin. gu is than given by:

gu =
∏

n

(2I ′
n + 1)(2J ′ + 1), (3.35)

where n labels the nuclei, and I ′ represents upper state nuclear spin. The rea-
son behind this factor is that the transition is now labeled with all quantum
numbers except projection of J ′ and for each J ′ substate there are

∏

n(2I ′
n+1)

nuclear spin states.



CHAPTER 4

Raman association of H2

We investigate the formation of molecular hydrogen by an inelastic Raman
scattering process which can take place in astrophysical environments. In
the Raman process that we study, a photon is scattered by a pair of col-
liding hydrogen atoms leaving a hydrogen molecule that is stabilized by
the transfer of kinetic and binding energy to the photon. We use a for-
mulation for calculating the photon scattering cross section in which an
infinite sum of matrix elements over rovibrational levels of dipole acces-
sible electronic states is replaced by a single matrix element of a Green’s
function. We evaluate this matrix element by using a discrete variable
representation.

Proc. R. Soc. Chem. Faraday Discuss. 133, 43 (2006)

4.1 Introduction

The formation of H2 from a pair of neutral hydrogen atoms in the presence of
a radiation field can be brought about by a Raman association process. Its
efficiency depends on the spectrum and the intensity of the radiation field and
it varies as the square of the hydrogen atom density. The process is likely to
contribute to H2 formation in dense atomic gas subjected to intense radiation
fields at wavelengths longer than the threshold wavelengths for absorption
in the Lyman and Werner band systems. In photon-dominated regions the

55
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ultraviolet photons may dissociate the molecules but with increasing depth
into the gas the corresponding optical depths become large and the H2 mo-
lecules are self-shielding. The optical depth for Raman association is small.
Raman association may also contribute to the formation of H2 in the high
atmospheres of hot Jupiters and generally in regions of atomic hydrogen
subjected to strong Lyman alpha radiation.

When the incident photon has a large wavelength the scattering cross
section and the corresponding rate of association for the production of molec-
ular hydrogen can be calculated from the polarizability of the hydrogen
molecule161,162. However at wavelengths close to and smaller than Lyman
α, resonant excitation of the bound rovibrational levels of dipole accessible
excited electronic states of the molecule enhances the cross sections and the
association rates162.

4.2 Theory

The Raman association process involves the inelastic scattering, from energy
~ω to ~ωsc, of electromagnetic radiation by a pair of hydrogen atoms colliding
on the X1Σ+

g ground state surface of molecular hydrogen:

H(2S) + H(2S) + ~ω → H2(
1Σ+

g ) + ~ωsc. (4.1)

The cross section in cm2J−1 associated with this process is given by:

σfi(ω) =
8πα2ωω3

sc

9c2e4
Sfi(ω), (4.2)

where α is the fine-structure constant, c is the speed of light and e is the
electronic charge. In Eq. (4.2) the Raman scattering matrix Sfi(ω) is given
by the Kramers-Heisenberg equation95:

Sfi(ω) =
∑

st

∣

∣

∣

∣

∣

∑

m

〈f |µ̂s|m〉〈m|µ̂t|i〉
ωmi − ω + iΓm/2

+
〈f |µ̂s|m〉〈m|µ̂t|i〉

ωfi + ω

∣

∣

∣

∣

∣

2

, (4.3)

where the coherent sum is over all the intermediate states |m〉, ωxy = ωx−ωy,
Γm is the inverse lifetime of the intermediate state |m〉 and µ̂s and µ̂t are
components of the dipole moment operator. In the calculation of Federman
and Frommhold162 the sum over intermediate states in Eq. (4.3) was evalu-
ated explicitly but only partially. The sum may be evaluated implicitly in
terms of dipole response functions163–168 which may be expressed in terms of
Green’s functions166,167. We discuss below a method to evaluate the matrix
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elements of the Green’s functions. The first term in Eq. (4.3) can give rise to
resonances where the second term can be neglected. In the off-resonant case,
where ωmi ≫ ω, the scattering matrix is given by the polarizability theory
of Placzek and Teller161 as:

SPT
fi (ω) =

1

9
|〈f |α‖ + 2α⊥|i〉|2δJ ′′J ′ + BJ ′′

J ′ |〈f |α‖ − α⊥|i〉|2, (4.4)

where α‖ and α⊥ are the parallel and perpendicular components, respectively,
of the polarizability of a hydrogen molecule in its ground state, and BJ ′′

J ′

depends on the initial and final rotational quantum numbers (J ′′ and J ′,
respectively) of the system:

BJ ′′

J ′ =











3
2

J ′′(J ′′−1)
(2J ′′−1)(2J ′′+1)

J ′ = J ′′ − 2
J ′′(J ′′+1)

(2J ′′−1)(2J ′′+3)
J ′ = J ′′

3
2

(J ′′+1)(J ′′+2)
(2J ′′+1)(2J ′′+3)

J ′ = J ′′ + 2.

(4.5)

We apply the usual Born-Oppenheimer approximation and we represent the
wave functions in Eq. (4.3) in the Hund’s case (a) basis {|ψJMJ

(a)p 〉}:

|ψJMJ

(a)p 〉 =
1 + (−1)pî√
2 + 2δΛ0δΣ0

√

[J ]/4πD
(J)∗
MJΩ(α, β, 0)|v; nΛSΣ〉, (4.6)

where Λ, S, Σ, and Ω are the usual Hund’s case (a) quantum numbers, p
denotes parity, î is the parity operator, n is the electronic primary quan-
tum number,

√

[J ]/4πD
(J)∗
MJΩ(α, β, 0) is a two-angle normalized Wigner D-

function, and v the vibrational quantum number, which is replaced by the
kinetic energy E for continuum states. We use the parity convention de-
fined by Van Vroonhoven and Groenenboom78. We denote 2J + 1 by [J ]
throughout.

Neglecting the second term in Eq. (4.3) and integrating over the angular
variables we find that the rotationally resolved scattering matrix for relative
collision energies E ′′ in the parity-unadapted basis can be written as:

SJ ′v′Ω′;J ′′E′′Ω′′(ω) =
1

[J ′′]

∑

MJ′′MJ′

∣

∣

∣

∣

∣

∑

JΩ

SJ ′′MJ′′Ω′′

J ′MJ′Ω′ (JΩ)ME′′J ′′Ω′′

v′J ′Ω′ (JΩ)

∣

∣

∣

∣

∣

2

. (4.7)

The angular factor S is given by:

SJ ′′MJ′′Ω′′

J ′MJ′Ω′ (JΩ) =

(−1)J+Ω+J ′−MJ′+J−MJ [J ]
√

[J ′][J ′′]
∑

MJ

(

J ′ 1 J
−MJ ′ 0 MJ

)

×
(

J 1 J ′′

−MJ 0 MJ ′′

)(

J ′ 1 J
0 −Ω Ω

) (

J 1 J ′′

−Ω Ω 0

)

, (4.8)
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Figure 4.1: The possible pathways for rotational changes in Raman association.
The path J → J → J is not possible for 1Σ+

u intermediate states.

where we used that in the X1Σ+
g state we have Ω′ = Ω′′ = 0. The angular

factor predicts electronic and rotational selection rules for the Raman as-
sociation process, schematically represented in Fig. 4.1; the selection rules
also reduce the number of candidates in the coherent sum over intermediate
states in Eq. (4.3). In Raman association, the system starts in the continuum
of levels with rotational quantum number J ′′ of the X1Σ+

g ground electronic
state and finishes as a bound level, with rotational quantum number J ′′ or
J ′′ ± 2, of the X1Σ+

g electronic state; transitions to final levels with rota-
tional quantum number J ′′ ± 1 are forbidden. Fig. 4.1 signifies that the
only allowed intermediate states in Eq. (4.3) are levels of electronic states
of 1Σ+

u and 1Πu symmetries, and that the rotational quantum numbers are
restricted to J ′′±1 for the 1Σ+

u intermediate levels and J ′′ and J ′′±1 for the
1Πu intermediate levels. The dynamical part M is given by:

ME′′J ′′Ω′′

v′J ′Ω′ (JΩ) = ~

∑

n

〈v′; J ′n′Ω′|d̂−ΩĜnJΩd̂Ω|E ′′; J ′′n′′Ω′′〉r, (4.9)

where integration is over the nuclear coordinate r, the d̂x are the relevant
components of the body-fixed dipole operator given by µ̂s =

∑

x d̂xD
(1)∗
sx (α, β, 0),
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and Ĝ is the Green operator associated with the Schrödinger equation for nu-
clear motion in the adiabatic Born-Oppenheimer hydrogen atom r-dependent
potential, VnΩ(r), of the relevant electronic intermediate state:

ĜnJΩ(ω) =

[(−~
2

2µr

d2

dr2
r + VnΩ(r) +

fΩ(J)

2µr2

)

− E ′′ − ~ω + iΓ/2

]−1

, (4.10)

where r is the nuclear separation, µ is the reduced mass for the motion and

fΩ(J) =

{

J(J + 1) Ω = 0
J(J + 1) − 1 |Ω| = 1.

(4.11)

Here we have neglected terms in the Hamiltonian that couple different elec-
tronic states.

In practice, the infinite sum over electronic states in Eq. (4.3) is truncated
so as not to include any contributions from distant electronic states. However
the contribution of distant electronic states to the scattering matrix can be
considered to be independent of ω 168. We write

Sfi(ω) = SKH
fi (ω) + Scorr

fi , (4.12)

where SKH
fi is the scattering matrix element obtained when the sum in Eq.

(4.3) is truncated and Scorr
fi is a constant correction term that accounts for

the distant states’ contribution which can be estimated by examining scat-
tering matrix elements in the off-resonance region, where the Placzek-Teller
approximation holds. The correction is

Scorr
fi = SPT

fi (ω) − SKH
fi (ω) ω ≪ ωmi, (4.13)

where SPT
fi is expressed in terms of the polarizabilities, α⊥ and α‖, by Eq. (4.4)

and the calculation of the polarizabilities includes all intermediate electronic
states. We evaluate the correction from Eq. (4.13) with SPT

fi (ω) and SKH
fi (ω)

computed at energy ~ω = 2.401 × 104 cm−1.

In the calculation by Federman and Frommold162, the term α‖ + 2α⊥ of
Eq. (4.1) was replaced by α‖ + 2α⊥ − 6α0, where α0 is the polarizability of
the hydrogen atom. Similarly, the r-dependent dipole transition moments
d(r) were replaced by d(r) − d(∞). However, since nuclear eigenstates on
the X1Σ+

g electronic surface are orthogonal, the extra term 〈f |α0|i〉, arising
from the subtraction, vanishes and is therefore unnecessary for rovibrational
Raman scattering.
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Figure 4.2: The lowest singlet potential energy curves169–172 of H2; the B′′1Σ+
u

and the D′1Πu states each have a double well structure.

4.3 Numerical Methods

The central part of our calculation is the evaluation of Eq. (4.9). We choose a
grid-based representation. The nuclear Hamiltonian matrix and final nuclear
bound states are represented using the sinc-function discrete variable repre-
sentation100 (sinc-DVR). The numerical initial state nuclear wave functions
are obtained by using the renormalized Numerov method to propagate them
on the X1Σ+

g potential energy curve and then matching them to scattering
boundary conditions. We restrict the sum over intermediate electronic states
to a sum over 6 optically allowed states; 3 are of 1Σ+

u symmetry and 3 are of
1Πu symmetry (See Fig. 4.2). The ab initio potential energy curves and elec-
tronic dipole transition moments are taken from calculations by Wolniewicz
and Staszewska169–172. We use the vibrationally resolved lifetimes from the
work by Fantz and Wünderlich173 to estimate the inverse lifetime Γm of each
intermediate state. In the case where E ′′ + ~ω > VnΩ(r → ∞), that is where
the sum of the initial state energy and the energy of the incoming photon
exceeds the dissociation limit of an intermediate electronic state, we use the
Green function absorbing boundary condition (ABC) method73–75 to prevent
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the matrix in Eq. (4.10) from becoming singular. The ABC-method consists
of replacing the constant 1

2
Γm by an r-dependent function γ(r), thus effec-

tively augmenting the potential VnΩ(r) with a negative imaginary potential
which absorbs the wave function in the physically non-relevant outer region.
Here we choose the Woods-Saxon potential:

γ(r) =
2λ

1 + exp (rmax − r)/η
, (4.14)

where λ and rmax are to be chosen such that sufficient absorption takes place
and η is to be chosen small enough to ensure that no significant reflection
occurs.

The main computational task is to solve the linear systems of equations
associated with the representation of the term ĜnJΩd̂Ω|E ′′; J ′′n′′Ω〉 in Eq.
(4.9). Since the potential energy curves of intermediate electronic states have
different r-dependences, we save computational time by adapting the grid and
minimizing the number of basis functions for each intermediate state. That
is, we keep the grid spacing constant and minimize the range of the grid.
The linear systems can than be solved on each grid separately, and the solu-
tions projected so that the inner product with the final state 〈v; J ′n′Ω′|d̂−Ω

can be taken. Table 4.1 shows the different grids used in this work. At
the resonances the matrix in Eq. (4.10) is singular and we represent the term
ĜnJΩd̂Ω|E ′′; J ′′n′′Ω〉 in Eq. (4.9) by χnJΩ

v (r)〈v; nJΩ|dΩ|E ′′; n′′J ′′Ω′′〉/(iΓm/2),
where χnJΩ

v (r) is the rovibrational nuclear wave function associated with the
resonance. Inspection of the resonances shows that the two methods of calcu-
lation are consistent with each other. The Raman association cross section is

Table 4.1: Number of grid points used for each intermediate state
potential. The grid points are given by 0.2, 0.3, . . . , 0.2 + 0.1N .

X1Σ+
g B1Σ+

u B′1Σ+
u B′′Σ+

u C1Πu D1Πu D′1Πu

N 118 198 198 398 118 198 398

computed for a grid of photon frequencies. Because the cross section is very
sharply peaked around resonances we do not use a grid that is linear in pho-
ton energy ~ω but choose instead a grid that is logarithmically spaced around
each resonance. The grid is cut off at 13.6 eV. Extensive experimentation
showed that choosing 50 logarithmically spaced points around every reso-
nance while leaving out redundant points gives a satisfactory description of
the spectral features. In total there are about 350 rovibrational resonances in
each spectrum depending on the initial rotational quantum number, yielding
about 12, 300 points on average to be computed per spectrum.
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Figure 4.3: Total Raman association cross section in atomic units of area/energy,
as a function of photon energy. The collision energy is 0.448 eV, and initial rota-
tional quantum number J ′′ = 6. The bars indicate the occurrence of rovibrational
resonances associated with the indicated excited electronic state.

For comparison we compute cross sections according to the theory of
Placzek and Teller. The matrix elements in Eq. (4.1) are evaluated using
the r-dependent polarizability of molecular hydrogen in the ground state
computed by Wolniewicz172. The initial (scattering) and final (bound) states
are evaluated on the grid as described above.

4.4 Results

Fig. 4.3 shows the total Raman association cross section as a function of pho-
ton energy for two hydrogen atoms, colliding at an energy of E = 0.448 eV.
The cross section shown is computed with the truncated Kramers-Heisenberg
equation, and the corrections from Eqs. (4.12) and (4.13) are applied. The
(initial) rotational quantum number is J ′′ = 6; this is appropriate to the
most abundant rotational state in the early Universe at a matter and ra-
diation temperature of about 4,000 K. The bars show where rovibrational
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resonances of the various intermediate states occur. The cross section in-
creases smoothly with photon energy, until the resonance region is reached.
At higher photon energies, in the resonance region, the cross section in-
creases significantly. The off-resonance background cross section increases
with about four orders of magnitude compared with the low photon energy
region. At a resonance, the cross section may be five to ten orders of mag-
nitude larger than the background cross section. At about 78, 770 cm−1 the
cross section in this spectrum decreases rapidly. The reason is that at these
photon energies the second dissociation continuum of the B1Σ+

u , B′1Σ+
u , and

C1Πu states is reached, and there are not many bound state resonances in
this energy region. At higher energies the number of resonances, and thus
the cross section, increases significantly again. The sharp cutoff at 93, 950
cm−1 occurs where the sum of the photon energy and the collision energy
exceeds the dissociation limit of the B′′1Σ+

u , D1Πu, and D′1Πu states.
In Fig. 4.4 we show the resonances associated with intermediate states,

specifically the v = 0, J = 5, and v = 0, J = 7 levels of the B1Σ+
u electronic

state; absence of a resonance at the v = 0, J = 6 level is consistent with
the selection rules depicted in Fig. 4.1. The dashed lines indicate the cross
sections, σJ ′←J ′′ ≡ ∑

v′ σv′J ′;E′′J ′′ , associated with transitions from an initial
state whose rotational quantum number is J ′′ = 6 in the X1Σ+

g continuum
to the various final rovibrational levels of the X1Σ+

g state. In the σ6←6 cross
section we find the two resonances at the v = 0, J = 5 and v = 0, J = 7
levels of the B1Σ+

u state, showing the contributions via the two paths for
intermediate 1Σ+

u electronic state depicted in Fig. 4.1. We find one resonance
in each of the σ4←6 and σ8←6 cross sections associated, respectively, with the
v = 0, J = 5 and v = 0, J = 7 levels of the B1Σ+

u state.
We also calculated the vibrationally resolved cross sections

∑

J ′ σv′J ′←E′′J ′′ .
In Fig. 4.5 the relative vibrational distributions at different photon scatter-
ing energies, ~ω, are compared. The black bars indicate results obtained
with the Kramers-Heisenberg formula, Eq. (4.3), and the white bars in-
dicate results obtained from from the Placzek-Teller approximation. The
photon angular frequencies are presented relative to the position of the an-
gular frequency, denoted ω0, of the B1Σ+

u (v = 0, J = 5) resonance. In the
off-resonance region, where ω−ω0 is equivalent to an energy shift from reso-
nance of about −40, 265 cm−1 (and ~ω = 2.401× 104 cm−1), the vibrational
distributions predicted by the Kramers-Heisenberg formula and the Placzek-
Teller approximation are very similar although the total cross sections differ
significantly; the higher lying vibrational levels (with vibrational quantum
number v = 10 − 13) are populated preferentially. When the photon energy
increases to about 2.2 cm−1 below the resonance, the distribution predicted
by the Kramers-Heisenberg equation starts to differ from the Placzek-Teller
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distribution; within 2.2 cm−1 of the resonance a significant number of lower-
lying vibrational states, mainly with v = 1 − 7, become populated while
the vibrational distribution predicted by the Placzek-Teller approximation
remains largely unaltered. At the resonance, the Kramers-Heisenberg equa-
tion predicts no significant population of the levels with v = 10 − 14. The
distribution is completely different from that predicted by the Placzek-Teller
approximation which fails to take proper account of the resonance contri-
butions. The distribution predicted by the Kramers-Heisenberg equation is
similar to that obtained from consideration of spontaneous or stimulated
emission from the B1Σ+

u (v = 0, J = 1) state to the ground state levels.

4.5 Conclusion and outlook

We pointed out that molecular hydrogen may be formed by Raman scattering
by a pair of hydrogen atoms colliding in the X1Σ+

g state and we presented a
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of H-atoms, colliding with a relative collision energy of 0.448 eV and J ′′ = 6 as a
function of photon angular frequency ω. Here, ω0 is the frequency associated with
the B1Σ+

u (v = 0, J = 5) resonance.

method for the accurate evaluation of the Raman cross sections in a radiation
field. We carried out a direct evaluation of the Kramers-Heisenberg equation
via a Green operator formalism. We used a grid-based representation. We
presented the first full calculation of photon-energy dependent Raman associ-
ation cross sections including all rovibrational resonances associated with the
intermediate states, based on the accurate electronic potential energy surfaces
and properties computed by Wolniewicz et. al 169–172. We compared the exact
results with those of the Placzek-Teller approximation and we showed that
final state vibrational distributions obtained with the Placzek-Teller approx-
imation and with the Kramers-Heisenberg expression are comparable except
in the region of the resonances where they differ significantly. Future work
will include thermal averaging over the collision energies of hydrogen atom
pairs and calculations of Raman association rate constants with application
to the formation of molecular hydrogen in astrophysical environments.





CHAPTER 5

Recombination of H2 by Raman association in the early

universe

We investigate the contribution that Raman association makes to H2-
production in the early universe at redshifts 10 ≤ z ≤ 104. The Raman
process involves inelastic scattering of electromagnetic radiation off two
colliding hydrogen atoms, taking away kinetic and binding energy and
leaving bound H2. We calculate the inelastic cross sections and rate
coefficients for this process and determine the Raman association rate in
the cosmic background radiation field present during the early stages of
the universe. A comparison with other H2-forming reactions in the early
universe is made.

ApJL 646, L91 (2006)

5.1 Introduction

According to the current standard cosmology, the universe began in an in-
tensly hot, dense state which cooled and expanded ever since. After a brief
inflationary and nucleosynthesis period, nucleons and electrons became sta-
ble and the universe cooled adiabatically, with thermal equilibrium between
radiation and matter. After about 2 × 105 years (redshift z ≈ 5 × 105) the
temperature had dropped to about 5000 K, and the first atoms began to
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form, mostly H, He and a trace of Li and their ions. At this point, matter
and radiation became thermally decoupled and matter cooled faster than
radiation. As there were no heavy elements, and star formation had not yet
occured, there was no dust and all chemistry that took place was necessarily
gas-phase (photo) chemistry.

The formation of molecules was an important event in the evolution of
the early universe. The chemistry and formation of molecules in the early
universe have been reviewed recently by Lepp et al.51, Dalgarno52, and Galli
and Palla53. The presence of molecular hydrogen is believed to have played
an important role in the early cosmological structure formation174.

The mechanisms that have been explored for the formation of molecular
hydrogen are the reaction sequences initiated by the radiative association of
H+ and He and H+ and H and the direct formation of H2 by associative
detachment in collisions of H− and H and the radiative association of ground
and excited hydrogen atoms. In this paper we focus on the formation of
hydrogen molecules from hydrogen atoms. Symmetry arguments show that
direct association of a pair of ground state hydrogen atoms to form a hydro-
gen molecule that is stabilised by the emission of a photon is not possible;
the symmetry is broken for a collision of a hydrogen atom and a deuterium
atom and direct association can proceed slowly53,175,176. We investigate the
possibility that a contribution to the formation of molecular hydrogen in as-
trophysical environments arises from Raman scattering of photons where a
transition occurs from a point in the vibrational continuum of the ground
electronic state, X1Σ+

g , of molecular hydrogen (that describes a pair of col-
liding hydrogen atoms) to a bound vibrational level of the X1Σ+

g state; the
excess energy (kinetic and binding) is removed by the scattered photons. In
this work we calculate the contribution of Raman association to the forma-
tion of H2 and compare it to those of other processes that have been taken
into account in models of the evolution of the universe51,53.

5.2 Theory and method

Raman association is an inelastic scattering process, where electromagnatic
radiation of energy ~ω scatters off two colliding H(2S) atoms, and causes a
transition from the continuum to a bound state of H2(

1Σ+
g ). Kinetic and

binding energy ~(ωsc − ω) is transfered to the radiation field in the process:

H(2S) + H(2S) + ~ω → H2(
1Σ+

u ) + ~ωsc. (5.1)
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The H2 production rate for this processes is given by an Arrhenius-type
equation:

dn(H2)

dt
= k(Tm, Tr)n(H)2, (5.2)

where the rate constant k depends on the matter temperature Tm and radi-
ation temperature Tr, and the n(X) are number densities in cm−3. The rate
constant is related to the Raman scattering cross section σ via the following
relation:

k(Tm, Tg) =
gcV

2

×
∑

f

∫∫

dEdω PTm
(E)ρTr

(ω)σfi(E,ω), (5.3)

where g = 1/4 takes into account that 3/4 of all collisions take place on
the H2(

3Σ+
g ) surface, and do not add to the Raman association rate. In

Eq. (5.3), c is the speed of light, V is unit volume, and the factor 1/2 is
introduced because the rate of association [Eq. (5.2)] is expressed in H-atom
density, rather than H-H pair density. The matter temperature dependence
is determined by the Boltzmann distribution

PTm
=

λ3
0

V
(2J + 1)e−E/kbTm , (5.4)

with J the rotational quantum number and λ0 =
√

2π~2/µkbTm the ther-
mal De Broglie wavelength, while µ is the reduced mass of the hydrogen
molecule. The dependence on radiation temperature is determined by the
Planck photon number density distribution:

ρTr
(ω) =

ω2

2πc3

1

e~ω − 1
. (5.5)

The cross section depends on the collision energy E, and the photon energy
ω, and is given by:

σfi(E,ω) =
8πα2ωω3

sc

9c2e4
Sfi(E,ω), (5.6)

where α is the fine-structure constant, e the elementary charge, and S is the
Raman scattering matrix, given by the Kramers-Heisenberg equation [See
Eq. (4.3)]. The computational method we use to calculate the cross sections
is described in detail in the previous chapter.
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Table 5.1: Processes contributing to the formation of H2 in the early universe.
All reaction rates from Stancil et al. 175 , except (2d) taken from Sauval and
Tatum 177 , and (4) from this work. All reaction rates are given in cm3s−1

except (2d) in s−1.

Reaction rate constant (cm3s−1 or s−1)
(1) H− + H → H2 + e− 1.5 × 10−9(Tm/300)−0.1

(2a) H+ + H → H+
2 + ~ω 6 × 10−19(Tm/300)1.8e20/Tr

(2b) H+
2 + H → H2 + H+ 6.4 × 10−10

(2c) H+
2 + e− → H + H 1.2 × 10−8(Tm/300)−0.4

(2d) H+
2 + ν → H+ + H 1.63 × 107e−32400/Tr

(3) H∗ + H → H2 + ~ω 2.09 × 10−14(Tm/300)0.24e−Tr/37800

(4) H + H + ~ω → H2 +~ωsc This work

The large number of rovibrational resonances [see Fig. 4.3] in the cross
section as a function of photon- and H-H scattering energy complicates nu-
merical evaluation of the double integral in Eq. (5.3). In order to ensure
convergence of the integral

∫

dωρTr
(ω)σ(E,ω) in Eq. (5.3), we increased the

number of points in the cross section as a function of ω. We did this by
taking the logarithm (base 10) of the cross sections and use cubic spline in-
terpolation from resonance to resonance, after which the interpolated values
are exponentiated. This way, a stable interpolation without oscillations was
obtained. We also checked if the number of computed cross sections is large
enough to be fitted by cubic splines by leaving out 50% of the ab initio points
and fitting again. We find that the results have converged to within 1 %.

After integration over the photon energy ω, a smooth function of the
collision energy E is obtained. We constructed a satisfactory representation
by evaluating it at 20 logarithmically spaced collision energies E, in the
range 10−6 − 10−2 a.u.. We use cubic spline interpolation again to converge
the integral over E in Eq. (5.3).

5.3 Early universe

We investigate the importance of Raman association of H2 in the early uni-
verse, after electron-nucleon recombenation (2× 105 years, z ≈ 5× 103), but
before the first star formation (108 years, z ≈ 10) by comparing the rate of
association with a number of other important H2-forming processes.

We considered (see Table 5.1) associatiative detachment of H− and H,
radiative association of H+ and H followed by reaction with H, competing
with dissociative recombination, photodissociation of H+

2 , and reaction of
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H+
2 with H−, radiative association of excited and ground state hydrogen, and

Raman association. The total H2 density as a function of time in this model
is given by:

n(H2) =
4

∑

s=1

∫ t

t0

dτ Rs(τ), (5.7)

where the Rs are the production rates dn(H2)/dt for the different processes
in Table 5.1, and t0 = 1.367 × 1012 s. Here, we also neglect that reaction
products arising from the destruction of H2 enter the expressions for R1 to
R4. For processes (1), (3) and (4) in Table 5.1 the production rates in cm−3/s
are given by:

Rs = ks(Tm, Tr)n(x)n(y), (5.8)

where n(x) and n(y) are the number densities of the relevant reactants, and
the reaction rate constants k are given in Table 5.1. To compute the produc-
tion rate of processes running via the H+

2 intermediate, we incorporate the
strongest H+

2 -destroying processes [labeled (2c) and (2d)]. Using a steady-
state model for H+

2 , we get:

R2 =
k2an(H+)n(H) × k2bn(H)

k2bn(H) + k2cn(e−) + k2d

. (5.9)

We use densities of H, H−, H∗, H+, and gas and radiation temperature as
a function of redshift, as computed by Stancil et al.175. The electron density
n(e−) is assumed to be equal to the proton density. During the early stages
of the universe, after recombination but before formation of the first stars
the radiation temperature decreases from about 104 K at z ≈ 104 to 10 K at
z ≈ 10 and the gas temperature decreases from about 103 to 10−3 K. The
total gas density decreases from approximately 103 to 10−3 cm−3.

5.4 Results

Figure 5.1 shows the Raman association rate constant as a function of mat-
ter temperature (Tm) and radiation temperature (Tr). The rate constant
decreases with increasing matter temperature because although the collision
rate increases with temperature, the shorter H-H interaction time per colli-
sion reduces the cross section for Raman association significantly. The rate
constant drops about four orders of magnitude as the gas temperature in-
creases from 10 to 104 K. The dependence on radiation temperature is much
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Figure 5.1: Raman association rate constant as function of matter temperature
Tm and radiation temperature Tr.

stronger, the rate constant increases steeply as the radiation temperature
becomes higher. From 10 to ∼ 2700 K, the rate constant increases by as
much as twenty orders of magnitude. At Tr ≈ 2700 K the increase with tem-
perature becomes stronger: from 2700 − 104 K, the rate constant increases
by about ten orders of magnitude. The reason is that at high radiation tem-
peratures high-energy photons become available so that the cross sections,
and thus the rate constants are significantly enhanced by the resonances.

In Fig. 5.2 the H2 production rates for the processes in Table 5.1 are shown
as a function of redshift. The Raman association rate (dashed line) has a
maximum at z ≈ 1385, when both the radiation and matter temperature are
about 3800 K. At this time, the Raman association rate is comparable with
the other H2-producing processes. The maximum is due to the competition
between the increasing availability of atomic hydrogen, caused by the recom-
bination of protons with electrons, and the decreasing radiation temperature.
At z ≈ 103, the Raman association rate starts decreasing more slowly with
time. Although both radiation and matter temperature drop below 2750
K here, it is the decrease in Tr that causes the change in behaviour. At
later times the H2-production is completely taken over by the H+-catalysed
process and the associative detachment of H− and H.
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Figure 5.2: H2 production rates as a function of redshift z in the early universe.
For the meaning of (1)-(4), see Table 5.1. The dashed line indicates the Raman
association rate in cm−3/s. The redshift z corresponds to a time scale running
from 4.33 × 104 to 2.35 × 108 yrs.

In Fig. 5.3 we show the fractional H2 abundance ns(H2)/nH, where nH is
the total H-density, produced by the different processes. It can be seen that
at 400 . z . 2600, a significant amount of the existing H2 was produced
by Raman association, although the total H2 abundance was still small. At
z ≈ 1600, as much as 25% of H2 present at that time was produced by
Raman association, the remaining 75% mainly came from radiative asso-
ciation of excited H with H. The result for the total fractional abundance
n(H2) =

∑4
s=1 ns(H2) as a function of z agrees well with calculations per-

formed by Stancil et al.175 and Galli and Palla53. Although we necessarily
overestimate the total fractional abundance n(H2)/nH since we neglect H2

destroying processes, we do reproduce the freeze-out time for H2 at z ≈ 100.
The effect of H2-destruction is especially important at high redshift mainly
because of the high efficiency of H photoionisation175. If we assume that the
destruction rate of H2 is independent of how the molecules were formed, it
is not important for this comparison.

In Table 5.2, we show the fractional abundances for different processes, at



74 Chapter 5: H2 in the early universe

10
1

10
2

10
3

10
4

10
−15

10
−10

10
−5

(z+1)

fr
ac

tio
na

l a
bu

nd
an

ce

(1)

(2)

(3)

(4)

n(H
2
)/n

H

Figure 5.3: Relative contributions to H2 density in the early universe. For the
meaning of (1)-(4) see Table 5.1. The dashed line depicts the contribution of
Raman association.

redshift z = 10.5. We find a total fractional abundance of about 1.3 × 10−6,
where Stancil et al.175 and Galli and Palla53 find about 1.1 × 10−6. Of all

Table 5.2: Integrated con-
tributions to H2 production
at z = 10.5 for the processes
in this model.

Process ns(H2)/nH

(1) 1.4711 × 10−7

(2) 1.1718 × 10−6

(3) 7.5352 × 10−10

(4) 1.1071 × 10−10

Total 1.3197 × 10−6

molecular hydrogen ever produced up to z = 10.5 about 0.01% was produced
by Raman association, which is not much less than the contribution made
by radiative association of excited with ground state hydrogen (∼ 0.08%).
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5.5 Conclusion

We investigate the rate of association of molecular hydrogen via a Raman
scattering process. We present the first calculation of the corresponding
inelastic scattering cross section over a wide range of photon- and collision
energies, in which all relevant rovibrational resonances are included. From
these cross sections we obtain the Raman association rate constant as a
function of matter-, and gas temperature and we use these rate constants to
evaluate the rate of Raman association under conditions present in the early
universe. We show that the contribution to H2 production around z ≈ 1600
is significant. The total contribution to the H2 production up to z = 10 is
comparable to the contribution made by radiative association of excited and
ground state H-atoms: on the order of 0.01%. We show that it is crucial to
take into account the effect of resonances at high radiation temperatures in
various astrophysical circumstances.
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CHAPTER 6

Validation of long-range interaction models for

photofragment polarization of an N2O-like molecule

The validity of an analytical long-range interaction model which has been
used to interpret recent molecular photodissociation experiments is in-
vestigated. The experiments involve a determination of photofragment
electronic polarization parameters using molecular beam techniques. In
the model, adiabatic behaviour is assumed in the short range, and a frame
transformation from the molecular to the atomic states is used to model
the product state distribution in the long range, where the dynamics are
considered to be purely diabatic. Validity of the model is investigated
by developing model potential energy surfaces, electronic dipole moment
surfaces and nonadiabatic couplings for an N2O-like molecule for which
the long-range interaction model should hold. Detailed photodissociation
calculations involving five adiabatic Born-Oppenheimer states are per-
formed for the N2O + ~ω → N2(

1Σ+
g ) + O(1Dλωλ

) reaction using these
model properties. The oxygen |ωλ| distribution is obtained as a function
of N2 rotational state and photodissociation energy. The calculations
are compared with the model and with experimental results by Teule et

al.
58. Qualitative agreement between experimental and calculated N2

rotational distributions is obtained. The calculations do not reproduce
the experimental photofragment polarization, mainly due to differences
between the modeled and experimental excitation step and because of
the form of the nonadiabatic interactions in the model. A study of con-
vergence behaviour as a function of the photodissociation grid reveals
that assumptions behind the long-range interaction model are only partly
valid.
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6.1 Introduction

Photodissociation processes are the motor behind chemical processes in pla-
netary atmospheres178–182, and are important in many astrophysical circum-
stances such as the interstellar medium183,184, protoplanetary disks185,186 and
interstellar molecular clouds187–190. It was also an important process for
chemistry of the early universe191.

The study of photodissociation processes is interesting in itself since it
they offer a sensitive experimental probe of interactions between atoms and
molecules. In the past quarter century, the developments in molecular beam
techniques, laser spectroscopy, cold molecule research34,38, and imaging me-
thods37 have made it possible to start studying photodissociation processes
in tremendous detail. Recently, production of cold fragments by photodisso-
ciation of Stark decelerated SO2 molecules was proposed by Jung et al.192,193.

By controlling the initial state of molecules before dissociation, and de-
termining the recoil velocity and internal state distribution of the photofrag-
ments, in principle the full photodissociation cross section can be obtained.
Some of the most detailed information one can extract from these experi-
ments is the distribution of projection quantum numbers (polarization) as-
sociated with the rotation of the photofragments and the rotation of the
electrons about the photofragments with respect to the molecular- or labo-
ratory frame.

Recently, photofragment electronic angular momentum polarizations have
been measured for a number of triatomic systems such as N2O (Teule et

al.58, 2000), NO2 (Coroiu et al.194, 2006), SO2 (Brouard et al.59, 2004) and
ozone (Brouard et al.195, 2006). In these cases, the velocity map imaging35,36

technique was employed, and a theoretical model based on the sudden limit
approximation and long-range interaction was used to interpret the data.

In the subsequent sections, the experiment on N2O by Teule et al. will
be used as an example. In that experiment, a hexapole state selector was
used to prepare a beam of neutral quantum state-selected N2O molecules
in the electronic ground X1Σ+ state. The selected molecules were in the
rovibrational ground state, with N2 − O bending quantum number ν = 1.
The molecules were subsequently dissociated using a laser at 203-205 nm
yielding the reaction:

N2O(X 1Σ+; vN2
, ν, v) + ~ω → N2(

1Σ+
g ; j , v ′

N2
) + O(1D2), (6.1)

where vN2
is the N − N stretching, ν the N2 − O bending, v the N2 − O
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stretching, and j the N2 fragment’s rotational quantum number. The O(1D2)
fragments are produced in the λ = 2 state with electronic photofragment pro-
jection quantum numbers ωλ distributed over ωλ = −2,−1, . . . 2, where ωλ

is defined here with respect to the Jacobi vector which connects the cen-
ter of mass of the N2 fragment with the oxygen fragment. The N2(j, v

′
N2

)
and O(1D2) fragments were quantum state-selectively detected using velocity
mapped imaging, which allowed for a determination of the O(1D2) electronic
polarization as a function of N2 rovibrational state (j, v′

N2
). The resulting

N2 molecules that are produced are vibrationally cold (v′
N2

= 1 for less than
2% of the molecules196) but rotationally highly excited. The rotational state
distribution has a single maximum at j = 74. The dependence of the O(1D2)
polarization on j was interpreted in terms of the long-range interaction model
mentioned above.

In the following subsection the long range interaction model and its un-
derlying assumptions is explained. In the subsequent sections these assump-
tiones are checked by developing a model interaction Hamiltonian for N2O
for which a long range interaction model can also be applied. Next, fully
quantum mechanical photodissociation calculations for this system are pre-
sented and compared with the model. Although the model system of our
choice here is N2O, the conclusions about the validity of the model can be
expected to hold more generally.

6.1.1 Long-range interaction model

Consider the photodissociation process from Eq. (6.1). In principle there are
five adiabatic electronic potential energy surfaces involved in the excitation
step: three of 1A′ symmetry, and two of 1A′′ symmetry. In the long range,
these surfaces correspond to degenerate linear combinations of the ωλ-states
in the O(1D2) limit [see also Sec. 6.2.2]. In the experiment by Teule et

al.58 the excitation energy is such that excitation mainly takes place to the
21A′ surface (97%) with a small contribution of the 11A′′ surface (3%). Both
excitations are allowed only upon bending of the molecule and are forbidden
in the linear geometry.

The excitation step from the electronic ground state in the can be repre-
sented as:

|11A′〉 + ~ω → α1|21A
′〉 + α2|11A′′〉, (6.2)

where |1A′〉 represents the adiabatic electronic ground state, and the αi are
expansion coefficients of the adiabatic electronic wave function after excita-
tion.
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In the model description nuclear dynamics is not included explicitly. It is
further assumed that in the short range, dissociation proceeds adiabatically
on the 21A′ and 11A′′ surfaces. However, in the long range the nonadia-
batic couplings between the five asymptotically degenerate electronic states
become significant, so all five states can be occupied by the system. In the
long range, the interaction between the O(1D2) and N2 fragments is given
by the quadrupole-quadrupole interaction Hamiltonian [given in Eq. (6.24)
below]. It is also assumed that in the long range, the electronic states evolve
adiabatically and are determined completely by the quadrupole-quadrupole
interaction. The electronic eigenstates in the long range are thus obtained
by diagonalizing the 5 × 5 quadrupole-quadrupole interaction Hamiltonian
V̂Q(θ) with matrix elements 〈λω′

λ|⊗〈Σ+
g |V̂Q(θ)|Σ+〉⊗|λωλ〉, where |Σ+〉 is the

electronic wave function of N2, and the |λωλ〉 are the five degenerate O1(D2)
states with ωλ = −2,−1, . . . 2. This interaction is anisotropic and thus the
eigenstates depend parametrically on the Jacobi angle (θ) between the N−N
axis and the Jacobi dissociation vector, pointing from the center of mass of
N2 to the oxygen atom. The diagonalisation yields five eigenstates: three of
A′, and two of A′′ symmetry. The ωλ populations in these states are given by
the absolute squares of the components cγ

ωλ
(θ) (γ labeling the symmetry) of

the eigenvectors. Neglecting coherent contributions (motivated by the fact
that excitation occurs mostly onto the 21A′ surface), the chance Pωλ

(θ) to
find the O(1D2) atom in some angular momentum state ωλ is given by:

Pωλ
(θ) = α2

1|c21A′

ωλ
(θ)|2 + α2

2|c11A′′

ωλ
(θ)|2. (6.3)

If it is assumed that a higher rotational quantum number j of the N2 frag-
ment corresponds to a larger dissociation angle θ, it is possible to analyze
experimental data where ωλ populations are measured against the molecular
rotational state. In the work by Teule et al. this was done, and qualitative
agreement between the model and the experiment was obtained.

The validity of the model depends on the ratio between the timescale
on which the molecule rotates, and the time it takes for the dissociating
fragments to reach the long-range limit. The model is plausible in the limit
where the recoil velocity is high enough so that the atom and molecule have
reached the long-range interaction limit before the molecule completes half
a turn. In the case of the N2O photodissociation experiments by Teule et

al., most of the N2 fragments are produced in rotational levels with j =
66 − 82, with the maximum at j = 74. This corresponds to rotational
frequencies of ∼ 4 × 1013 s−1. Less than 50% of the dissociation energy
(which is ∼ 0.05 au) is released as recoil kinetic energy, which corresponds
to about 5 × 1013 Å/s. Thus, assuming direct dissociation, the N2 molecule
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has rotated about four times before the oxygen atom reaches the long-range
interaction region (around 5 Å). If the whole rotational distribution of N2 is
taken into account, on average more than 90% of the dissociation energy is
transferred to rotational motion of the N2 fragment. These arguments lead
to the central question of this chapter:

At which fragment separation does the photofragment electronic
angular momentum polarization become fixed in lab space, and
how does this depend on dissociation conditions, such as the total
dissociation energy and rotational state?

In the following sections, this question is studied explicitly for an N2O-like
molecule by developing model interaction- and electric dipole (transition)
surfaces, and performing detailed quantum mechanical photodissociation cal-
culations.

In section 6.2 the Hamiltonian of the N2O molecule is given and a symmetry-
adapted basis set expansion for the potential energy operator is derived for
the short-range (Sect. 6.2.1 and 6.2.2) as well as the asymptotic long-range
(Sect. 6.2.3). In all calculations the N-N distance is frozen at its equilibrium
distance of 2.13199 a0. Next, in Sections 6.2.4 and 6.3 the model potential
energy surfaces and model dipole (transition) moment surfaces are developed.
Both the potential energy surfaces and the dipole moment surfaces are con-
structed to yield a computationally feasible photodissociation problem while
obeying all the symmetry restrictions of the molecule. Also, the angular de-
pendence is chosen so that upon bending, the degeneracies of the B1∆ and
C1Π states are lifted as in the real molecule. The potential energy operator
derived here also reproduces the analytical long-range potential energy sur-
faces. In Sections 6.4 and 6.5, the details of the calculations of the bound
states, dissociative states, and photodissociation cross section are given. Sec-
tion 6.6 gives parametrization of the model surfaces and the results of the
calculations. A summary and outlook is given in section 6.7.

6.2 Hamiltonian

The N2O molecule is described using the Jacobi coordinates (r, s), where r
is the vector connecting the nitrogen atoms and s points from the center of
mass of N2 to the oxygen atom. A sketch of the coordinate system is given
in Figure 6.1. In polar coordinates, the Jacobi vectors can be written as:

s = sR(α, β, 0)eZ ≡ sŝ (6.4)

r = rR(α, β, 0)R(φ, θ, 0)eZ ≡ rR(φ′, θ′, 0)eZ ≡ rr̂, (6.5)
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Figure 6.1: A sketch of the Jacobi coordinate system in the center of mass
laboratory frame. The angle φ is the azimuthal angle of the N − N axis in the
2-angle embedded body fixed frame and is not depicted here.

where eZ is the unit vector pointing in the direction of the laboratory Z axis,
α and β are the azimuthal and polar angle of the scattering coordinate s in
the space fixed frame, θ = cos−1(s ·r)/(sr) is the angle between s and r and φ
is the azimuth of the N-N axis in the two-angle embedded body-fixed frame.
We also defined s = ||s|| and r = ||r||, and the R(·, ·, ·) are rotation matrices
in the Euler parametrization. If the distance between the nitrogen atoms
is kept fixed at r0, the generalized Born-Oppenheimer Hamiltonian operator
in this coordinate system can be written as:

Ĥ =
−~

2

2µs

d2

ds2
s +

ĵ2

2mr2
0

+
l̂2

2µs2
+ V̂ (r, s). (6.6)

The term “generalized” signifies that the potential energy operator V̂ (r, s)
can couple different electronic states197. Furthermore, ĵ is the end-over-end
angular momentum operator for the nitrogen molecule, acting on angles φ′

and θ′, l̂ is the nuclear angular momentum operator acting on α and β, m is
the reduced mass of N2, and µ = mOmN2

/(mO + mN2
).

Here, the fragmentation of N2O into N2(
1Σ+) and O1(D2) is studied.

Both fragments have zero total spin and the electronic state of the nitrogen
molecule is spatially nondegenerate. It follows that there are five adiabatic
Born-Oppenheimer potentials correlating with the O(1D2) limit. Namely
one for each diabatic oxygen state |λµ〉, where λ = 2 is the total orbital
angular momentum quantum number of the electrons of the oxygen atom
after dissociation, and µ = −2,−1, . . . , 2 it’s projection quantum number
on the laboratory Z-axis. For future reference, we note that the electronic
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wave functions ϕλµ(v) = 〈v|λµ〉 have the following property under change of
coordinate system:

ϕλµ(v′) = R̂†(α, β, 0)ϕλµ(v) =
∑

ωλ

ϕλωλ
(v)D(λ)∗

µωλ
(α, β, 0), (6.7)

or:

R̂†(α, β, 0)|λµ〉 =
∑

ωλ

|λωλ〉D(λ)∗
µωλ

(α, β, 0). (6.8)

Here, R̂(·, ·, ·) are rotation operators in Euler parametrization, v and v′ are
(spin)coordinate vectors represented in the body fixed and space fixed frames
respectively, and ωλ is the projection of λ on the molecule fixed z-axis. The
D(λ) is Wigner’s rotation matrix of order λ. Using the above notation, the
potential energy operator can be written as

V̂ (r, s) =
∑

µµ′

V
(λ)
µµ′ (r, s)|λµ〉〈λµ′|. (6.9)

In the next section, an explicit basis set expansion for V
(λ)
µµ′ is developed.

6.2.1 Potential energy operator

In the absence of external fields, the interaction V̂ (r, s) between the atom
and diatom depends only on the relative positions of the fragments, and not
on the overall orientation of the system. So we demand that

V̂ (Rr,Rs) = R̂†V̂ (r, s)R̂ = V̂ (r, s). (6.10)

Note that rotation of r and s on the left hand side of Eq. (6.10) implies a
rotation of the electronic coordinates, [via Eq. (6.9)].

A tensor operator basis which obeys property (6.10) can be constructed
by generating a complete tensor product basis for operators acting on r̂, ŝ
[See Eqs. (6.4, 6.5) ], and the electronic coordinates, and coupling this basis
to tensors of rank zero:

[

[

C(j)(r̂) ⊗ C(l)(ŝ)
](L) ⊗ T(k)(v′,w′)

](0)

0

=
∑

Mq

[

C(j)(r̂) ⊗ C(l)(ŝ)
](L)

M
T̂ (k)

q (v′,w′)〈LMkq|00〉, (6.11)

where 〈· · · · | · ·〉 is a Clebsch-Gordan coefficient. We introduce the nota-
tion C(l) = {Clml

; ml = −l,−l + 1 . . . l}, and likewise for C(j) and T(k).
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The Clm are spherical harmonics in Racah normalization, and v′ and w′

are (spin)electronic coordinates in the space-fixed frame as defined in the
previous paragraph. Furthermore, we have

[

C(j)(r̂) ⊗ C(l)(ŝ)
](L)

M
=

∑

mjml

Cjmj
(r̂)Clml

(ŝ)〈jmjlml|LM〉. (6.12)

The electronic part of the tensor operator basis is given by T̂
(k)
q (v′,w′) =

〈v′|T̂ (k)
q |w′〉 with

T̂ (k)
q =

∑

µµ′

|λµ〉〈λµ′|(−1)k−µ′〈λµλ−µ′|kq〉. (6.13)

Using Eqs. (6.4), (6.5), and (6.7) and the transformation property of a tensor
operator, we can separate overall from internal rotation:

[

[

C(j)(r̂) ⊗ C(l)(ŝ)
](L) ⊗ T(k)(v′,w′)

](0)

0

=
[

[

C(j)(θ, φ) ⊗ C(l)(eZ)
](L) ⊗ T(k)(v,w)

](0)

0
D

(0)
00 (α, β, 0)

=
∑

q

Cjq(θ, φ)T̂ k
q (v,w)〈jql0|kq〉〈kqk−q|00〉, (6.14)

where D
(0)
00 (α, β, 0) = 1, and in the last line we used Clml

(eZ) = δml0 along
with some properties of Clebsch-Gordan coefficients. The rotation-invariant
expansion of the potential energy can now be written as:

V̂ (r, s) =
∑

jlkq

v
(λ)
jlk (r0, s)Cjq(θ, φ)T̂

(k)
−q 〈jql0|kq〉〈kqk−q|00〉. (6.15)

This can be further simplified by absorbing some of the factors in the expan-
sion coefficients:

V̂ (r, s) =
∑

jkq

v
(λ)
jkq(r0, s)Cjq(θ, φ)T̂

(k)
−q , (6.16)

where

v
(λ)
jkq(r0, s) =

∑

l

(−1)k−q 〈jql0|kq〉√
2k + 1

v
(λ)
jlk (r0, s). (6.17)

Matrix elements V
(λ)
µ,µ′ can be found using Eqs. (6.7) and (6.13):

V
(λ)
µ,µ′(r, s) = 〈λµ|V̂ (r, s)|λµ′〉 =

∑

j

v
(λµµ′)
j (r0, s)Cj(µ′−µ)(θ, φ), (6.18)
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with:

v
(λµµ′)
j (r0, s) =

∑

k

(−1)λ−µ〈λµλ−µ′|kq〉v(λ)
jkq(r0, s). (6.19)

Equation (6.18) is general for any atom-molecule system with the molecule
in a 1Σ+

g state. Using Eq. (6.17) and Cjµ′−µ(θ, φ) = Cj(µ′−µ)(θ, 0)ei(µ′−µ)φ we
can write:

V̂
(λ)
µµ′ (r, s) = V̂

(λ)
µµ′ (θ, φ, s) = V̂

(λ)
µµ′ (θ, s)e

i(µ′−µ)φ. (6.20)

6.2.2 Symmetry properties

In the linear configuration, the N2O molecule has C∞v symmetry which is
reduced to Cs upon bending. In the T-shaped geometry the symmetry in-
creases again to C2v. The only conserved symmetry which applies in all
configurations is σ̂(xz): reflection in the molecular xz-plane. The action of
σ̂(xz) on the electronic wave function |λµ〉 is given by:

σ̂(xy)|λµ〉 = (−1)p+λ−µ|λ−µ〉, (6.21)

where p = 0 is the parity of the asymptotic O(1D2) atom. A symmetry-
adapted basis of types A′ (symmetric) and A′′ (antisymmetric) is thus given
by197:

A′
{ |0〉 = |λ0〉,

|µ+〉 = 1√
2

[

|λ−µ〉 + (−1)λ−µ|λµ〉
] (6.22)

A′′
{

|µ−〉 = −i√
2

[

|λ−µ〉 − (−1)λ−µ|λµ〉
]

. (6.23)

In this basis, the 5 × 5 electronic potential energy matrix splits into a 3 × 3
block of A′ and a 2 × 2 block of A′′ symmetry. In Table 6.1 a correlation
diagram is shown for the electronic states of N2O in different symmetries.
Since the potential energy operator is Hermitian, there are 15 independent
matrix elements in a real representation. This number is reduced to 9 inde-
pendent matrix elements in C2v symmetry. Explicit symmetry relations for
the potential energy matrix elements are given by Zeimen et al.197.

6.2.3 Long range potential

In the limit of large s, the form of the potential is given analytically by
the long range multipole expansion. The multipole expansion for an atom-
diatom system has recently been discussed by Brouard et al.59,195 in the
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Table 6.1: Correlation diagram for the diabatic elec-
tronic states of N2O in different symmetries. The sub-
script notation in C∞v symmetry indicates the symmetry
under reflection in the molecular xz-plane. For example:
σ̂(xz)|C1Πyz+zy〉 = |C1Πσ̂(xz)(yz+zy)〉 = |C1Π−(yz+zy)〉 =
−|C1Πyz+zy〉.

Linear bent T-shaped
C∞v Cs C2v Notation

C1Πyz+zy → 2A′′ → 1B1 Π(2A′′; 1B1)
C1Πxz+zx → 3A′ → 1B2 Π(3A′; 1B2)
B1∆xy+yx → 1A′′ → 1A2 ∆(1A′′; 1A2)
B1∆x2−y2 → 2A′ → 2A1 ∆(2A′; 2A1)
X1Σ+

z2 → 1A′ → 1A1 Σ+(1A′; 1A1)

context of SO2 + ~ω → SO(3Σ−) + O(
3
P ) and O3 + ~ω → O2(

3Σ−
g ) + O(1D)

photodissociation reactions.
Since both the N2 and the oxygen fragment have no dipole moment, the

leading term in the expansion for N2(
1Σ+

g )-O(1D2) scattering is the quadrupole-
quadrupole interaction. Using Eq. (13) in Brouard et al. 59 , the 5 × 5
quadrupole-quadrupole interaction matrix in the diabatic basis {|2µ〉; −2 ≤
µ ≤ 2} reads:

VQ(θ, s) =
QN2

QO

s5

×















−6c20 2
√

6c21 −c22 0 0

2
√

6c21 3c20 2c21 −
√

6
2

c22 0
−c22 2c21 6c20 −2c21 −c22

0 −
√

6
2

c22 −2c21 3c20 −2
√

6c21

0 0 −c22 −2
√

6c21 −6c20















, (6.24)

where we use the notation clm = clm(θ) = Clm(θ, 0). In the symmetry-
adapted basis {|0〉, |µ+〉, |µ−〉, µ = 1, 2} we have VQ = VA′

Q ⊕ VA′′

Q , where:

VA′

Q (θ, s) =
QN2

QO

s5







6c20 2
√

2c21 −
√

2c22

2
√

2c21 3c20 +
√

3
2
c22 2

√
6c21

−
√

2c22 2
√

6c21 −6c20






(6.25)

VA′′

Q (θ, s) =
QN2

QO

s5

[

3c20 −
√

3
2
c22 2

√
6c21

2
√

6c21 −6c20

]

. (6.26)

Here, QO and QN2
are permanent quadrupole moments of O(1D2) and N2O(X2Σ+),
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respectively. They can be written in terms of expectation values of (body-

fixed) components of the quadrupole operator Q̂(2) = {Q̂(2)
−2, Q̂

(2)
−1, . . . Q̂

(2)
2 }:

QN2
= 〈Σ+

g |Q̂
(2)
0 |Σ+

g 〉 (6.27)

QO = 〈λ0|Q̂(2)
0 |λ0〉, (6.28)

where |Σ+
g 〉 and |λωλ〉 have been defined above. The values of QO and QN2

are
obtained from electronic structure calculations with the MOLPRO program
package79. A value of QO = 0.86727244 au is obtained using wave functions
computed at the CASSCF level using an aug-cc-p-V6Z basis set. A value of
QN2

= −1.05948221 au at the N − N equilibrium separation of 2.13199 a0 is
determined with CCSD(T) calculations in an aug-cc-pV5Z one-electron basis
set, using the finite field method.

6.2.4 Model potential

We construct model potential energy surfaces for the dynamics calculations.
For a realistic description, our model potential must have at least the fol-
lowing four properties: first, in the linear configuration the Π and ∆ states
must be two-fold degenerate, and the energy-ordering of Σ+, Π, and ∆ states
must be the same as in N2O. Second, as the molecule bends away from θ = 0,
the degeneracy of the Π and ∆ states with different σ̂(xz) symmetry must
be lifted as in N2O, and in T-shaped geometry (θ = π/2) the system must
also have σ̂(xy) symmetry. Third, the Π and ∆ states must be repulsive at
all s, and the Σ+ ground state must support bound states, and fourth, the
quadrupole-quadrupole interaction must be retrieved exactly for large s.

The short-range electronic potential energy surfaces are most easily mod-
eled in the adiabatic basis. In Eqs. (6.24) to (6.26) the long-range potential
energy matrix is given in the diabatic (symmetry-adapted) basis. The adia-
batic basis is by definition the basis where the matrix V(θ, s) is diagonal, so
we also need a model unitary transformation between diabatic and adiabatic
states. In the long range, this transformation can be written as:

VQ(θ, s) =
QN2

QO

s5
U(θ)Λ(θ)U†(θ), (6.29)

where Λ is the diagonal matrix containing the θ-dependent potentials λγ(θ),
where γ labels the adiabatic electronic states, and U is a unitary matrix that
transforms between the diabatic and adiabatic bases. The matrices in Eqs.
(6.25) and (6.26) can be diagonalized analytically, and the eigenvalues λγ(θ)
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Table 6.2: Model functions for the short-range potential. See Eq. (6.38)

γ fγ(s) gγ(θ)
1A′ 1

6
{De[1 − exp{−(s − se)}]2 − De} 6 − a1 sin2{cos−1(cosn θ)}

2A′ (s − 2)−1 exp{s − s1} −3 + a2 sin2 θ
3A′ (s − 2)−1 exp{s − s2} 3 − a2 sin2 θ
2A′′ f 3A′

(s) λ2A′′

(θ)
1A′′ f 2A′

(s) λ1A′′

(θ)

are given by:

λ
1A′

2A′ (θ) = ±
[

36c20(θ)
2 + 32c21(θ)

2 + 2c22(θ)
2
]1/2

(6.30)

λ3A′

(θ) =

√
6

2

[√
6c20(θ) + c22(θ)

]

(6.31)

λ
1A′′

2A′′ (θ) = −3

2
c20(θ) −

√
6

4
c22(θ)

±1

4

[

{18c20(θ) −
√

6c22(θ)}2 + 384c21(θ)
2
]1/2

. (6.32)

We label the eigenvalues with the unique Cs symmetry-labels and not with
the full labels given in Table 6.1 to avoid cluttering. Just as the potential in
Eqs. (6.25) and (6.26), the transformation matrix U(θ) splits in two parts:
U = UA′ ⊕ UA′′

. For the A′ surfaces, the transformation matrices UA′

can
be written in terms of its columns u′: UA′

= [u′
1u

′
2u

′
3]N

′, with:

u′
1i(θ) = 1 (6.33)

u′
2i(θ) =

λi(θ) +
√

2c22(θ)u3i − 6c20(θ)

2
√

2c21(θ)
(6.34)

u′
3i(θ) =

√
2c22(θ) −

√
3λi(θ) + 6

√
3c20(θ)√

6c22(θ) − 6c20(θ) − λi(θ)
, (6.35)

where i = 1, 2, 3 labels the columns and and N ′
ij = δijN

′
ii contains the θ-

dependent normalization factors for the column vectors u′
i. For the A′′ sur-

faces, we similarly have UA′′

= [u′′
1u

′′
2]N

′′, with:

u′′
1i(θ) = 1 (6.36)

u′′
2i(θ) =

λi(θ) − [3c20(θ) −
√

3/2c22(θ)]

2
√

6c21(θ)
. (6.37)

With the use of Eq. (6.29), we model the diabatic potential energy surfaces
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as follows:

V(θ, s) = U(θ)
[

w−(s)F(s) + w+(s)QN2
QOs−51

]

× [w−(s)G(θ) + w+(s)Λ(θ)]U†(θ). (6.38)

Here, the w±(s) are switching functions of the form:

w±(s) = 1
2
{1 + tanh[±α(s − s0)]}, (6.39)

where s0 determines the point where the quadrupole-quadrupole interaction
becomes effective, and α determines the smoothness of the transition. In
Eq. (6.38), 1 denotes the 5 × 5 identity matrix. The F and G are diagonal
matrices whose non-zero elements are the short range potential energy func-
tions fγ(s) and gγ(θ), respectively. The fγ(s) and gγ(s) have been chosen as
simple as possible, while obeying the restrictions mentioned at the beginning
of this paragraph. They are summarized in Table 6.2. It is easily verified
that Eq. (6.38) returns to the quadrupole interaction matrix in Eq. (6.29)
for large s. At small internuclear distances (s < s0), the s-dependent part of
the Σ(1A′; 1A1) ground state potential is a Morse potential, where the pa-
rameters se and De determine the potential equilibrium distance and binding
energy. In g1A′

(θ), the parameter 0 < a1 < 6 determines the height of the
barrier at θ = π/2. Larger a1 gives a higher barrier. The width (in θ) of
the potential is controlled with n, where smaller n yields a wider potential,
allowing the molecule to bend over wider ranges of θ. The Π(3A′; 1B2) and
Π(1A′′; 1B1), and ∆(2A′; 2A1) and ∆(1A′′; 1A2) are degenerate at θ = 0, and
the degeneracy is lifted at nonlinear geometry. In the inner region, these
states are given by Yukawa-like potentials, to ensure a repulsive wall in the
inner region. The repulsive walls are controlled by parameters s1 and s2 in
f 2A′

(s) and f 3A′

(s). Smaller (possibly negative) s1 and s2 shift the repulsive
wall to smaller distances s. The Π(3A′; 1B2) state is repulsive everywhere,
but contains a minimum in θ at θ = π/2. The parameter 0 < a2 < 3 controls
the depth of that minimum. Values a2 > 3 give rise to an unphysical deep
minimum in the Π(3A′; 1B2) state at θ = π/2. In Fig. (6.2) we plot the
potentials and indicate the influence of some of the parameters.

6.3 Model dipole moment surfaces

In order to model the photoexcitation process from ground to excited state
electronic surfaces, we develop model electronic dipole moment surfaces. The
dipole moment rotates as a spherical tensor of rank one, and thus we find
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Figure 6.2: The adiabatic model potentials and parameters as a function of s and
θ, see Eq. (6.38) and Table 6.2. The arrows indicate the value of the parameters
shown in the plot, except when a parameter is prefixed with a ∼. The ∼ should
be read as “is controlled by”. In this particular plot we have De = 3.5, n = 1,
(a1, a2) = (5, 2), (se, s1, s2) = (3.3, 1.8, 1.5), and (s0, α) = (9, 3).

body-fixed angular basis functions by coupling r̂- and ŝ dependent angular
basis functions and separating overall rotation from internal rotation:

[

C(j)(r̂) ⊗ C(l)(ŝ)
](1)

t
=

∑

q

[

C(j)(θ, φ) ⊗ C(l)(~ez)
](1)

q
D

(1)∗
tq (α, β, 0)

=
∑

s

Cjq(θ, φ)〈jql0|1q〉D(1)∗
tq (α, β, 0). (6.40)

Here, we used Eqs. (6.4) and (6.5). It follows that molecule fixed components
of the dipole operator can be expanded as:

d̂(1)γγ′

q (s, θ, φ) =
∑

jl

nγγ′q
lj (s)〈jql0|1q〉Cjq(θ, φ)

≡
∑

j

nγγ′q
j (s)Cjq(θ, φ), (6.41)
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Table 6.3: Symmetry conditions and expansion coefficients for the com-
ponents of the dipole operator in the adiabatic representation.

|0〉 = |Σ(1A′; 1A1)〉 conditions model function

〈γ|d̂|0〉 linear bent T-shaped nγ0q
0 nγ0q

1 nγ0q
2

〈Σ(1A′; 1A1)|d̂±1|0〉 0 6= 0 6= 0 0 ±1 0

〈Π(3A′; 1B2)|d̂±1|0〉 6= 0 6= 0 0 ±1
3

√
2

3
0

〈∆(2A′; 2A1)|d̂±1|0〉 0 6= 0 6= 0 0 1 0

〈Π(2A′′; 1B1)|d̂±1|0〉 6= 0 6= 0 6= 0 1 0 0

〈∆(1A′′; 1A2)|d̂±1|0〉 0 6= 0 0 0 0 ±1

〈Σ(1A′; 1A1)|d̂0|0〉 6= 0 6= 0 0 0 1 0

〈Π(3A′; 1B2)|d̂0|0〉 0 6= 0 0 −1√
14

3√
14

−
√

2
7

〈∆(2A′; 1A1)|d̂0|0〉 6= 0 6= 0 0 0 1 0

〈Π(2A′′; 1B1)|d̂0|0〉 0 0 0 0 0 0

〈∆(1A′′; 1A2)|d̂0|0〉 0 0 0 0 0 0

where we defined the s-dependent expansion coefficients nγγ′q
j (s). The γ

and γ′ label adiabatic electronic states, and we have −1 ≤ q ≤ 1. Since all
electronic (transition) dipole moments vanish as s → ∞, we use the following
simple s-dependence:

nγγ′q
j (s) = nγγ′q

j e−(s−se)2 , (6.42)

where se is the equilibrium distance of the electronic ground state (see also

the previous subsection), and the nγγ′q
j do not depend on s.

The values of nγγ′q
j are restricted by symmetry rules imposed by the point

group symmetry of the molecule in linear, bent and T-shaped configura-
tions. For example, excitation from the Σ(1A′; A1) to the ∆(2A′; 2A1) state
is forbidden in linear geometry, but becomes allowed upon bending of the
molecule. In the first four columns of Table 6.3, the conditions imposed by
the point group symmetry for different geometries of the molecule are shown
for each component of the dipole operator, for transitions from the adiabatic
electronic ground state to excited states. The conditions on the value of com-
ponents of the dipole operator at various angles allow us to set up systems
of linear equations to determine the coefficients nγγ′q

j with j = 1, 2, 3. The
results are shown in columns 5-7 of Table 6.3, and in Fig. 6.2 the absolute

magnitudes |d̂(1)γγ′ | =
∑

q(d
(1)γγ′

q )2 as a function of angle are plotted. The
diabatic representation of the electric dipole moment operator is obtained by
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the transformation:

d(1)γγ′

q = 〈γ|d̂(1)
q |γ′〉 =

∑

ωλω′

λ

〈γ|λωλ〉〈λωλ|d̂(1)
q |λω′

λ〉〈λω′
λ|γ〉. (6.43)

The matrix elements 〈γ|λωλ〉 are matrix elements of the matrix U(θ) of
section 6.2.4 (but represented in the {|λωλ〉} instead of the {|µ±〉} basis).
Since the ground state nuclear wave functions (see Sect. 6.4.1) have small
amplitude at θ ≈ π/2, we here set U(θ) = 1. The transformation in Eq.
(6.22) is then the effective transformation between adiabatic and diabatic
states. After applying this transformation, we can write:

d
(1)ωλω′

λ
q = 〈λωλ|d̂(1)

q |λω′
λ〉 =

∑

k

n
ωλω′

λ

k (s)Ck(ω′

λ
−ωλ)(θ, φ). (6.44)

Using that for the ground state the adiabatic state γ = 0 equals the diabatic
state |λ0〉, the full electronic transition dipole vector functions in the {|λωλ}
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basis are given by:

d
(1)
±1 =















1√
2
{C1±1(θ, φ) − iC2±1(θ, φ)}

1±3i
3
√

2
+ 1

3
C1±1(θ, φ)

±C1±1(θ, φ)
∓1±3i

3
√

2
− 1

3
C1±1(θ, φ)

1√
2
{C1±1(θ, φ) ∓ iC2±1(θ, φ)}















e−(s−s0)2 , (6.45)

and

d
(1)
0 =















1√
2
C10(θ, φ)

−1
2
√

7
{C00(θ, φ) − 3C10(θ, φ) + 2C10(θ, φ)}

C10(θ, φ)
1

2
√

7
{C00(θ, φ) − 3C10(θ, φ) + 2C10(θ, φ)}

1√
2
C10(θ, φ)















e−(s−s0)2 . (6.46)

6.4 Wave functions

6.4.1 Bound states

The bound state wave functions can be expanded in the following basis func-
tions:

|ψLML
vν 〉 =

∑

njωj

cLvν
njωj

|nLMLjωj; 0〉, (6.47)

where v labels the s-stretching mode and ν the θ-bending mode. The to-
tal nuclear angular momentum quantum number is indicated by L, and its
projection on the space fixed Z-axis by ML. The basis functions are given
by:

|nLMLjωj; 0〉 =

s−1fn(s)

√

2L + 1

4π
D

(L)∗
MLωj

(α, β, 0)|jωj〉|0〉. (6.48)

Here, |0〉 labels the ground state adiabatic electronic wave function [see Eq.
(6.22)]. The |jωj〉 are end-over-end rotational eigenfunctions of the N2 frag-
ment, where ωj labels the projection of j on the molecule fixed z-axis, and
s−1fn(s) is a Morse oscillator eigenfunction. In the bound state calculations
we neglect coupling between different electronic states, since in the short
range the energy difference between the ground and excited states is large
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compared to terms coupling these states. Neglecting long-range terms, it fol-
lows that the Hamiltonian matrix elements for N2O in the electronic ground
state are given by:

〈nLMLjωj; 0|Ĥ|n′L′ML′j′ωj′ ; 0〉 =

δLL′δMLML′

{−~
2

2µ
〈n|1

s

∂2

∂s2
s|n′〉δjj′δωjωj′

+b0j(j + 1)δnn′δjj′δωjωj′
+ C−

Lωj′
C−

jωj′
δωjωj′+1 + C+

Lωj′
C+

jωj′
δωjωj′−1

+〈n|f 1A′

(s)|n′〉〈jωj| g1A′

(θ)|j′ωj′〉
}

, (6.49)

where b0 is the rotational constant of N2 given by b0 = 1/mr2
0 (with m

the reduced mass of the N2 molecule), and g1A′

(θ) and f 1A′

(s) are de-
fined in Table 6.2. We used that |0〉 = |λ0〉 [see Eq. (6.22)], and C±

jmj
=

√

j(j + 1) − mj(mj ± 1).
We represent the Morse oscillator eigenfunctions fn(s) in a sinc-DVR ba-

sis100,101. The fn(s) are obtained by diagonalizing the sinc-DVR Hamiltonian,
where the s-dependent potential is given by a cut through the short-range
potential (which is a Morse potential) at θ = 0. The bound state functions
are then obtained by setting up and diagonalizing the Hamiltonian matrix in
Eq. (6.49). We find that calculations are converged when basis sets include
|jωj〉 functions up to j = 30, and n = 14.

6.4.2 Continuum states

The molecule fixed photodissociation wave functions with total energy E and
total angular momentum quantum number J are given by:

|ψJMJΩjωλ

E 〉 =
∑

Ω′j′ω′

λ

s−1fJΩjωλ

Ω′j′ω′

λ
(s; E)|JMJΩ′j′λω′

λ〉. (6.50)

The angular functions are given by:

|JMJΩjλωλ〉 =

√

2J + 1

4π
D

(J)∗
MJΩ(α, β, 0)|jωj〉|λωλ〉, (6.51)

where ωj = Ω− ωλ, the |λωλ〉 are diabatic electronic wave functions with ωλ

the electronic orbital angular momentum projection quantum number on the
body-fixed z-axis. Furthermore, J denotes the total (electronic plus nuclear)
angular momentum quantum number with space fixed projection MJ and
molecule fixed projection Ω. The radial functions fJΩjωλ

E (s) = {fJΩjωλ

Ω′j′ω′

λ
(s; E)}
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can be found by solving the set of coupled second order differential equations:

∂2

∂s2
fJΩjωλ

E (s) = W(s; E)fJΩjωλ

E (s). (6.52)

Here, W(s; E) is the matrix of the operator Ŵ (s; E) given by

Ŵ (s; E) =
~

2

2µ
[b0ĵ

2 +
l̂2

2µs2
+ V̂ (r, s) − E]. (6.53)

The matrix elements of Ŵ are given by:

~
2

2µ
〈JMJΩjλωλ|Ŵ |JMJΩ′j′λω′

λ〉 = −EδΩΩ′δjj′δωλω′

λ

+
−1

2µs2
δjj′

{

C−
J ′Ω′C

−
λω′

λ
δΩΩ′−1δωλω′

λ
−1 + C+

J ′Ω′C
+
λω′

λ
δΩΩ′+1δωλω′

λ
+1

+ C−
JΩ′C

−
j′(Ω′−ω′

λ
)δΩΩ′−1δωλω′

λ
+ C+

JΩ′C
+
j′(Ω′−ω′

λ
)δΩΩ′+1δωλω′

λ

− C+
λω′

λ
C−

j′(Ω′−ω′

λ
)δΩΩ′δωλω′

λ
+1 − C−

λω′

λ
C+

j′(Ω′−ω′

λ
)δΩΩ′δωλω′

λ
−1

+
[

J(J + 1) + j(j + 1) + λ(λ + 1) + 2(Ωωλ − ω2
λ − Ω2)

]

δΩΩ′δωλω′

λ

}

+ b0j(j + 1)δj′jδΩΩ′δωλω′

λ
+ δj′jδΩΩ′〈jωj|V̂ (λ)

ωλω′

λ
(θ, φ, s)|j′ωj′〉. (6.54)

where we used that the matrix of Ŵ is block diagonal in J and MJ , and λ = 2
has only one value in this work. The potential energy operator V̂ωλω′

λ
(θ, φ, s)

is defined in Eq. (6.20). The radial functions in Eq. (6.52) obey the boundary
conditions fJΩjλωλ

E (0) = 0. The boundary conditions for s → ∞ are most
conveniently written in a basis of space fixed channel eigenfunctions:

fJkjl
k′j′l′(s; E) = vk′j′l′(s; E)δkk′δjj′δll′ − uk′j′l′(s; E)Skjl∗

k′j′l′(E; J), (6.55)

where S(E; J) is the scattering matrix, and vk′j′l′(s; E) and uk′l′j′(s; E) are
outgoing and incoming waves, respectively197. Furthermore l is the quantum
number for l̂2, and |j − λ| ≤ k ≤ j + λ. The transformation between the
space fixed and molecule fixed functions reads:

fJΩjωλ

E (s) =
∑

kl

fJkjl
E (s)

√

2l + 1

2J + 1
〈kΩl0|JΩ〉〈j(Ω − ωλ)λωλ|kΩ〉. (6.56)

We determine the radial functions using the renormalized numerov propaga-
tor in the molecule fixed basis set. At the end of the grid we transform to the
space fixed basis set to match the wave functions to the boundary conditions,
and then transform back. The calculations can be performed in the space
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fixed basis as well. However, in the space fixed basis evaluation of the W
matrix becomes more cumbersome, since evaluation of the potential energy
matrix then involves the transformation of Eq. (6.56). Since we are inter-
ested in ωλ populations, working in the molecule fixed basis has conceptual
advantage as well.

6.5 Cross section

The photodissociation cross section is given by:

σfi(ω) =
4π2α~ω

e2(2L + 1)

∑

JMJΩML

|〈ψJMJΩjωλ

E |ǫ · µ̂|ψLML
vν 〉|2. (6.57)

Initial and final state quantum numbers are indicated with i and f , where
i = {L, v, ν} and f = {j, ωλ}. Furthermore, α is the finestructure constant,
e the elementary charge, ω the photon angular transition frequency, µ̂ the
electronic dipole operator and ε the photon polarization vector. The elec-
tronic dipole operator in the molecule fixed frame (d̂) is given by [see Eq.
(6.40)]:

µ̂
(1)
t =

∑

s

d̂(1)
s D

(1)∗
ts (α, β, 0). (6.58)

We choose the space fixed laboratory center of mass eZ unit vector parallel
to ε, so we have ε · µ̂ = µ̂

(1)
0 . Using Eqs. (6.51), (6.48), and Eq. (6.50),

integrating over angles α, β, θ, and φ, and completing the sum over MJ and
ML we get:

σfi(ω) =
4π2α~ω

3e2

∑

JΩ

|〈ψJΩjωλ

E ||d̂(1)||ψL
vν〉|2, (6.59)

where the reduced matrix element can be written as:

〈ψJjωλ

E ||d̂(1)||ψL
vν〉 =

∑

I

√

2j′ + 1

4π(2j′′ + 1)
〈fJΩjωλ

Ω′j′ω′

λ
(E)|nω′

λ
ω′′

λ

k |fn〉cLvν
n′′j′′ωj′′

×〈Lωj′′1q|JΩ′〉〈j′′ωj′′kt|j′(Ω′ − ω′
λ)〉〈j′′0k0|j′0〉. (6.60)

The index set I indicates the sum over all (double) primed quantum numbers,
k and q: I = {Ω′, j′, ω′

λ, n
′′, j′′, ωj′′ , k, q}. In the second line, the Clebsch-

Gordan coefficient 〈j′′ωj′′kt|j′(Ω′ − ω′
λ)〉, results from integration over the

internal angles θ and φ. As a consequence of the model for the diabatic to
adiabatic transformation in sections 6.2.4 and 6.3, we set t = Ω′ − ω′

λ − ωj′′

if |Ω′ − ω′
λ − ωj′′| ≤ 1, and t = q otherwise. This way, the spatial symmetry

is reflected in the calculation of the cross sections, and selection rules are
obeyed.
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Figure 6.4: Model potential energy surfaces used in this calculation. The colored
areas indicates the energy region for which scattering calculations were performed.

6.6 Results

As stated in the introduction, the central question we ask here concerns the
fragment separation where the ωλ distribution during dissociation does not
change anymore. The time-independent photodissociation wave function we
calculate here does not contain any direct information about the dynamics of
the photodissociation process. However, we are able to extract some dynam-
ical information by investigating the convergence of the product distribution
as the propagation grid is extended. In order to minimize computational
costs, we use a model potential here (see Figure 6.4 and Table 6.2) where the
bound state has a relatively shallow minimum potential energy De = 0.5 eV,
and a binding distance se = 3.3 a0. Furthermore we have angular parameters
n = 2, a1 = 5.5 and a2 = 2, and we use s1 = 0 and s2 = −0.3 for the repulsive
potentials. The analytical long-range potential energy surface is switched on
at 9 a0 to ensure a smooth transition from the short-range to long-range in-
teraction. Scattering calculations are performed at 25 dissociation energies,
ranging from 0.027 to 0.68 eV (1 to 25 mEh). As shown in Figure 6.4, the
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range of dissociation energies is large enough to probe all dissociative sur-
faces. Apart from these calculations, a few calculations with “more realistic”
potentials, with larger binding energy (De = 3.5), more repulsive potentials
(s1 = 1.8 and s2 = 1.5) at higher dissociation energies were performed as
well, in order to check to what extent the results depend on the choice of our
parameters.

Here we look at the transition {J = 1, j, ωλ} ← {L = 0, v = 0, ν = 0}.

6.6.1 Rotational distribution

In the left panel of Figure 6.5 the rotational distribution of the N2 fragment
(j) at the various dissociation energies are shown for the fully converged
calculations. It is clear that higher dissociation energies yield higher j-levels.
The maximum centers around j = 9 at a dissociation energy of 1 mEh, and
increases to j = 48 at E = 25 mEh. It can be seen that at low dissociation
energies, the shape of the rotational distribution varies significantly as the
energy of dissociation varies, while at higher energies the distribution stays
similar in shape, while the main peak shifts as a function of the energy.

In the right panelof Figure 6.5 the relative average photofragment veloc-
ity and the average fraction of energy which ends up as rotational energy
is shown as a function of total dissociation energy. In experiments on N2O
photodissociation at high dissociation energies, more than 90% of the disso-
ciation energy is transferred to rotation of the N2 fragment. In our model
this fraction runs from about 50% at low energies, to about 70% at high dis-
sociation energies. The difference can be ascribed to the differences between
the potential. Our model potential is far less anisotropic than the true N2O
potential. For instance, in N2O the excited electronic 1Σ−(1A′′; 2A2) state
has avoided crossings with the 1∆(2A′; 2A1) and 1∆(1A′′; 1A2) states, which
strongly influences the excitation and dissociation mechanism. If the bound
state potential well depth is increased, the dissociative potentials are made
more repulsive, and the dissociation energies increased accordingly, we also
find that typically about 70% of the dissociation energy is transferred into
rotation of the N2 fragment.

In the experiment by Teule et. al58, the photofragments were produced
with relative velocities of about 1.5 × 1013 Å/s. Depending on dissociation
energy, we find in our model calculations relative velocities running from
about 0.5 to 2.0×1013 Å/s, which is quite comparable with the experiment.
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Figure 6.5: Left pane: rotational distribution of N2 molecules as a function of
dissociation energy E. Right pane: fraction of dissociation energy converted to
N2 rotational energy (solid line) and final relative velocity vdiss of photofragments
(dashed line).

6.6.2 Distribution of |ωλ|

In Figure 6.6 the relative yield of |ωλ| states is plotted as a function of
the rotational quantum number j of the N2 fragment, centered around the
most abundant j-value (jmax) at various dissociation energies. Considering
the differences between our model potential and the real N2O potential, as
well as differences in the excitation mechanism, it is not surprising that the
oxygen fragment polarization as a function of jmax differs significantly from
the experimental distributions. The dipole (transition) surfaces in the model
are chosen such that they obey all rules of symmetry relevant for the molecule,
but no assumptions are made about the relative magnitude of the dipole
moments. It can therefore be expected that more than the experimentally
observed 3% of the excitation will take place to the 1′A′′ surface in the model.
As result, interference between wavepackets propagating on the 11A′′ and
the 21A′′ surfaces will significantly affect the |ωλ| distribution. It can also
be expected that the choice of the short-range nonadiabatic coupling matrix
U(θ) has significant influence on the actual ωλ distribution.

The main difference between our result and the experiment by Teule et

al.58, is the increase in the |ωλ| = 2 population as a function of j, at the cost
of ωλ = 0. Such a trend is lacking in the present results.
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Figure 6.6: |ωλ| distribution at various dissociation energies, as a function of N2

rotation quantum number j. The relative yields of ωλ = 0 (+), |ωλ| = 1 (◦) and
|ωλ| = 2 (×) are plotted as a function of j, around the most abundant rotational
state jmax, indicated with the vertical line, at the dissociation energy E. The
highest j-value is the cutoff value for the distribution.

6.6.3 Convergence of product distribution functions

Measures for convergence

In order to be able to see at what point the rotational and angular dis-
tributions become fixed, we performed a series of convergence tests, where
scattering wave functions and cross sections are computed by numerov prop-
agation over s-grids of varying length, given by 2.20, 2.22, . . . , si. We thus get
a sequence of computed cross sections {σ(i)

fi
(ω), i = 1, 2 . . . n}, correspond-

ing to different propagation distances s1, s2, . . . sn. This sequence of cross
sections should converge as n → ∞. We define the following convergence
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parameter for the total cross section:

di(ω) =
|∑jωλ

σ
(i)
fi

(ω) − σ
(n)
fi

(ω)|
∑

jωλ
σ

(n)
fi

(ω)
. (6.61)

In order to study the convergence properties of the rotational and ωλ product
distributions, we first define the distribution function

P
(i)
j (ω) =

∑

ωλ
σ

(i)
fi

(ω)
∑

jωλ
σ

(i)
fi

(ω)
, (6.62)

for the rotational distributions, and the distribution function

P (i)
ωλ

(j, ω) =
σ

(i)
fi

(ω)
∑

ωλ
σ

(i)
fi

(ω)
, (6.63)

for the ωλ distribution at a given value of j. The convergence parameter we
use is given by:

d′
i(ω) =

1

2

∑

k

|P (i)
k (ω) − P

(n)
k (ω)|, (6.64)

where k can stand for ωλ or j. It follows from the definitions of di(ω) and
d′

i(ω) that 0 ≤ di(ω) ≤ 1 and 0 ≤ d′
i(ω) ≤ 1. We use the propagation

distances si = 6, 7, 8, 9, 10, 12, 14, 16 a0. The value of the cross section at 16
a0 is considered the converged value.

Results

In Figure 6.7 the convergence of the total cross section is shown as a func-
tion of propagation distance and dissociation energy. In the left pane, each
line corresponds to calculations where the energy is kept fixed and the prop-
agation distance varied, and in the right paneleach line corresponds to a
calculation where the propagation distance is kept fixed and the dissociation
energy is varied.

It can be seen that the total cross section in general converges as the
propagation distance increases. At a propagation distance of about 6 a0,
the total cross section differs less than about 10% from the converged cross
section. There is no clear correspondence between the dissociation energy
and the convergence of the total cross section.
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Figure 6.7: Convergence di(ω) of total photodissociation cross section as a func-
tion of si and energy, as defined in Eq. (6.61).
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Figure 6.8: Left pane: convergence d′i(ω) of rotational distribution, as a function
of dissociation energy E and propagation distance si. Right pane: idem, but for
the ωλ distribution. The convergence parameters are defined in Eq. (6.64).

The situation is somewhat different for convergence of the rotational dis-
tribution, which is plotted in the left panelof Figure 6.8. The rate of conver-
gence as a function of propagation distance si depends on the total dissocia-
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tion energy. Calculations performed at higher dissociation energies converge
faster as a function of si. This indicates that at at higher energies the ro-
tational distribution is determined at smaller dissociation distance s. At a
propagation distance of 7 a0, the rotational distribution differs less than 10%
from the converged distribution for all but the lowest dissociation energies.

In the right panelof Figure 6.8, the convergence behaviour of the ωλ dis-
tribution is plotted for the most likely j-state occuring at each dissociation
energy. It can be seen that as the propagation distance si increases, the de-
pendence of d′

i(ω) on energy gets stronger. Thus, as the energy of dissociation
gets higher, the ωλ-distribution is determined at shorter interfragment sepa-
ration distances. At higher dissociation energies, the ωλ distribution differs
less than 10% from the converged distribution at 16 a0.

Given the above results, we are now able to discuss the relation with the
analytical long-range interaction model. Remember that this model implic-
itly assumes that in the region where the ωλ distribution is determined, the
potential behaves as the analytical quadrupole-quadrupole interaction. It
follows from our results, that even in this strongly simplified model about
90% of the final j-distribution and oxygen polarization are determined in a
region where the shape of the potential differs significantly from the long-
range potential. This indicates that the assumption that the potential can
be described as a quadrupole-quadrupole interaction in the recoupling region
is probably too strong.

On the other hand, the assumption that the dependence of the fragment
polarization on the j-level can be translated into a dependence on the bending
angle θ seems quite plausible.

Dissociation takes place mostly on the ∆ state surfaces. At a distance of
6 a0, the maximum difference in energy between the adiabatic ∆(1A′′; 1A2)
and ∆(2A′; 2A) states is about 0.15 mEh at θ = π/2, which is about 30
times smaller than the smallest dissociation energy used here. The energy
differences decreases to about 0.04 mEh at 7 a0 and about 5×10−6 Eh at 8
a0 respectively. Judging from the data plotted in the right panelof Figure
6.8, a convergence of the ωλ distribution up to 10% from the final result
is obtained when the maximum ratio between the energies of the relevant
electronic energy surfaces and the dissociation energy is on the order of 0.001-
0.01. Similarly, we find that a ratio on the order of about 5% is enough to
converge the rotational distribution to within 10% of it’s final value.
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6.7 Conclusion and outlook

We present 2-dimensional model potential energy surfaces and electronic
dipole (transition) moment surfaces which can be useful in studying mod-
els for photodissociation of N2O-like molecules. The model potentials and
dipole moment surfaces obey all restrictions imposed by the symmetry of the
system and the long-range quadrupole-quadrupole interaction is reproduced
analytically for the potential energy surfaces. A model transformation be-
tween the adiabatic and diabatic representations of the electronic states was
developed, based on the long range analytical transformation.

The transformation matrices and model potentials are used to judge the
validity of a long-range interaction model, used to the predict the O(1D2)
electronic polarization upon the photodissociation reaction N2O + ~ω →
N2(X

1Σ+) + O(1D2). To this end the rotational distribution of the N2 frag-
ment and polarization of the O(1D2) fragment are computed using time-
independent methods and compared with experiment. We conclude that
there is qualitative agreement with the rotational distribution, in the sense
that both in the experiment and in the model calculation a high percent-
age of the available dissociation energy is transferred to rotational energy of
the N2 fragment. There is no clear similarity between the experimental and
calculated O(1D2) polarization, mostly because of differences in the model
nonadiabatic couplings and the excitation mechanism.

In order to gain some insight into where the polarization of the oxygen
fragment becomes fixed, convergence properties of the calculated cross sec-
tions were studied, as a function of energy and propagation distance. The
results indicate that the N2 rotational distribution becomes fixed earlier in
the dissociation process than the oxygen polarization. It is concluded that
at moderately high energies, more than 90% of the distribution is fixed at
relative short range. Most of the dynamics relevant for determining the N2

rotational distribution and the oxygen polarization takes place on a range
shorter than 6 a0. The rotational distribution converges when the ratio be-
tween energy differences between the electronic surfaces on which the disso-
ciation takes place, and the dissociation energy, is on the order of 5%, while
the polarization of the oxygen atom converges when this ratio is on the order
of 0.1-1%. The results indicate that the quadrupole-quadrupole interaction is
not the most important interaction which determines the final oxygen pola-
rization distribution. However, the results indicate that the relation between
oxygen polarization and N2 rotational quantum number can be translated
into a dependence of polarization on the bending angle between the N2 and
oxygen fragment.

The work presented here serves as a first step towards a complete descrip-
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tion of photodissociation of N2O-like molecules into electronically degenerate
states. As a next step the excitation model should be improved, to better
reflect the actual excitation. After this, the model transformation between
diabatic and adiabatic states should be improved.

The long-range interaction model can possibly be improved by extending
the model to (roughly) incorporate the angular dependence of the short-range
potential. One of the key difficulties in building such a model description will
be to find the transformation between the adiabatic and diabatic represen-
tation in the short range. The development of such models will undoubtedly
be valuable in the interpretation of a great number of (planned) experiments.
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Summary

The study of interaction between electromagnetic radiation (light) and mo-
lecules is of importance in many areas of science. Understanding these pro-
cesses on a fundamental level can therefore be of great value.

This dissertation deals with theoretical and computational investigations
into several photodynamical processes taking place in the hydroxyl radical
(OH), molecular hydrogen (H2) and nitrous oxide (N2O).

In Chapter 2, a number of high-level ab initio potential energy curves and
(transition) dipole moments for the OH molecule are computed. The bound
state energy levels obtained from these potentials show good agreement with
experimental values. The results are used to estimate the (2+1) resonance
enhanced multiphoton ionization (REMPI) spectrum for the (D, 3)2Σ−(v′) ←
X2Π(v′′) transitions, which is compared with experiments by M. E. Greenslade
et al.. Qualitative agreement with experiment for the line strengths is ob-
tained. Furthermore, the decay rate of the Rydberg 2Σ− states are com-
puted, where the effect of predissociation is incorperated for the first time.
It is shown that the lifetime of the Rydberg 2Σ− states for rotationally cold
molecules is limited mainly by predissociation caused by spin-orbit coupling.

In Chapter 3, a new potential energy curve, electric dipole moment func-
tion, and spin-orbit coupling function for OH in the X2Π state, based on
high-level ab initio calculations is presented. These properties, combined
with a spectroscopically parametrized lambda-type doubling Hamiltonian,
are used to compute the Einstein A coefficients and photoabsorption cross
sections for the OH Meinel transitions. Comparing with earlier ab initio cal-
culations, it is concluded that our dipole moment and potential energy curve
give the best agreement with some of the experimental data to date.

In Chapter 4, the formation of molecular hydrogen by an inelastic Raman
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scattering process (Raman association) is investigated. The process may
be of importance in several astrophysical environments such as star-forming
regions or, H2-formation in the early universe. In the Raman process that is
studied, a photon is scattered by a pair of colliding hydrogen atoms leaving a
hydrogen molecule that is stabilized by the transfer of kinetic energy to the
photon. Both the Placzek-Teller approximation and the Kramers-Heisenberg
equation are used in the calculation of the scattering cross sections. Raman
association cross sections are calculated on a wide range of photon energies
for the first time, and it is shown that the Placzek-Teller model fails at certain
energies.

In Chapter 5, H-H Raman association cross sections are computed with
methods explained in Chapter 4 as a function of H-H scattering energy and
radiation wavelength. These cross sections are then used to compute the
rate of Raman association as a function of hydrogen gas temperature and
radiation temperature. Using a cosmological model, the Raman association
rate in the cosmic background radiation field present during the early stages
of the universe is determined. A comparison with other H2-forming processes
is made. It is concluded that Raman association contributed significantly
to the H2 population for a short time during and after the recombination
era. However, the total relative contribution, counted over the time from
recombination to the start of star formation (∼108 yr. after the big bang) is
only minor.

In Chapter 6 the validity of an analytical long-range interaction model is
investigated. This model has recently been used to interpret recent molecu-
lar photodissociation experiments. The experiments involve a determination
of photofragment electronic polarization parameters using molecular beam
techniques. Validity of the model is investigated by developing model po-
tential energy surfaces, electronic dipole moment surfaces and nonadiabatic
couplings for an N2O-like molecule for which the long-range interaction model
should hold. Detailed photodissociation calculations involving five adiabatic
Born-Oppenheimer states are performed for the photodissociation reaction
using these model properties. The oxygen polarization as a function of N2

rotational state and photodissociation energy are obtained. The calculations
are compared with the model and with experimental results by Teule et al..
Qualitative agreement between experimental and calculated N2 rotational
distributions are obtained. The calculations do not reproduce the experi-
mental photofragment polarization, mainly due to differences between the
modeled and experimental excitation step and because of the form of the
nonadiabatic interactions in the model. A study of convergence behaviour
as a function of the photodissociation grid reveals that assumptions behind
the long-range interaction model are only partly valid.



Samenvatting

Onderzoek naar de interactie tussen electromagnetische straling (licht) en
moleculen vindt toepassingen in allerlei wetenschappelijke en industriële vakge-
bieden. Een fundamenteel begrip van processen die optreden bij deze inter-
actie is daarom van grote waarde.

Dit proefschrift is gewijd aan theoretisch onderzoek naar lichtgëınduceerde
processen in het hydroxyl radicaal (OH), het waterstofmolecuul (H2) en stik-
stofoxidemolecuul (N2O).

Het OH radicaal is een zeer reactief molecuul (radicaal) wat een be-
langrijke rol speelt bij verbrandingsprocessen en chemische processen in de
aardatmosfeer. Verder is het een molecuul wat voorkomt in astrofysische
omgevingen zoals regio’s waar sterren worden geboren en interstellaire wolken.
Een goed begrip van lichtgëınduceerde processen in het OH radicaal draagt
rechtstreeks bij aan onderzoek naar deze omgevingen. Het OH radicaal wordt
vaak gebruikt als modelsysteem om theoretische en experimentele methoden
te testen omdat het een van de kleinste open schil moleculen is. In hoofd-
stuk 2 worden nieuwe berekeningen aan electronische toestanden van het OH
radicaal gepresenteerd. De uitkomsten van die berekeningen (potentiaalcur-
ven en dipoolmomentcurven) zijn vervolgens gebruikt om de bewegingstoes-
tanden van de O en H atoomkernen in het molecuul uit te rekenen. Hierbij is
een uitstekende overeenstemming met de experimentele waarden gevonden.
Vervolgens zijn de potentiaal- en dipoolmomentcurven gebruikt om de over-
gangssterkten bij een twee-foton absorptieproces te berekenen. De resultaten
komen kwalitatief overeen met experimenteel bepaalde waarden uit een ex-
periment van M.E. Greenslade et al.. Tot slot zijn een aantal vervalprocessen
(via predissociatie en lichtemisie) van aangeslagen electronische toestanden
in OH doorgerekend. De berekeningen tonen aan dat voor deze toestanden
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(de D2Σ− en 32Σ− toestanden) predissociatie het belangrijkste vervalproces
is.

In hoofdstuk 3 wordt de berekening van een nieuw dipoolmoment en spin-
baancurve voor de electronische grondtoestand van OH beschreven. Deze
zijn vervolgens gebruikt voor de berekening van de levensduren van aanges-
lagen kerntoestanden (het Meinel systeem). Vergeleken met eerdere ab initio

berekeningen reproduceert deze berekening een aantal experimentele resul-
taten het best.

Moleculair waterstof (H2) is het meest eenvoudige neutrale molecuul, en
het meest voorkomende molecuul in het universum. Astrofysici nemen aan
dat H2 onder andere een belangrijke rol speelde bij de vorming van de eerste
sterren, zo’n 108 jaar na de oerknal. Een vraag hierbij is welke processen een
rol gespeeld hebben bij het vormen van H2 uit een ijl gas van losse water-
stofatomen. Hoofdstuk 4 beschrijft de vorming van moleculair waterstof via
het Raman associatie proces. Raman associatie is een inelastisch verstrooi-
ingsproces, waarbij achtergrondstraling wordt verstrooid aan twee botsende
waterstofatomen. Tijdens dit proces staat het H-H botsingspaar kinetische
energie af aan het veld, zodanig dat gebonden H2 gevormd wordt. In hoofd-
stuk 4 wordt een methode besproken om de de werkzame doorsnede behorend
bij dit proces uit te rekenen. De werkzame doorsnede is een maat voor de
kans dat Raman associatie optreedt bij een gegeven H-H botsingsenergie
en golflengte van achtergrondstraling. Er wordt gebruik gemaakt van twee
methoden: de Placzek-Teller benadering en de Kramers-Heisenberg vergelijk-
ing. We concluderen dat de Placzek-Teller benadering niet voor alle relevante
fotonenergiën geldig is.

In hoofdstuk 5 is de methode uit hoofdstuk 4 gebruikt om de werkzame
doorsnede voor Raman associatie van H2 te berekenen voor een groot aantal
foton- en H-H botsingsenergiën. Deze doorsneden zijn vervolgens gebruikt om
de reactiesnelheidsconstanten voor H-H Raman associatie te berekenen. De
constanten hangen zowel af van de temperatuur van de achtergrondstraling
als van de temperatuur van het atomaire waterstofgas. De constanten zijn
vervolgens gebruikt in een kosmologisch model voor chemie in het vroege uni-
versum om de bijdrage van H2-vorming door Raman associatie te berekenen.
De conclusie is dat Raman associatie een significante bijdrage leverde aan
H2 vorming tijdens het recombinatie tijdperk (zo’n 105 jaar na de oerknal).
Echter, de totale bijdrage van Raman associatie vanaf het recombinatie tijd-
perk tot aan de eerste stervorming (zo’n 108 jaar na de oerknal) is klein
vergeleken met andere H2-vormende processen.

Het stikstofoxidemolecuul N2O is beter bekend is onder de naam lachgas.
N2O is ook een broeikasgas wat voorkomt in de aardatmosfeer. Stikstofoxide
kan in de atmosfeer uiteenvallen (fotodissociëren) in N2 en O onder invloed
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van zonlicht. In het laboratorium kunnen fotodissociatie experimenten wor-
den gedaan om de interactie tussen N2 en O op een fundamenteel niveau
te onderzoeken. Fotodissociatiepocessen zijn vaak zo ingewikkeld dat the-
oretische modellen nodig zijn om de experimenten te kunnen interpreteren.
Hoofdstuk 6 beschrijft een onderzoek naar de geldigheid van een analytisch
model, wat recentelijk gebruikt is om een N2O fotodissociatieëxperiment te
interpreteren. Tijdens dit experiment zijn de productverdeling van de O-
en N2 fragmenten bepaald. Speciefiek zijn de rotatietoestanden van het N2

fragment en de polarisatie (ladingsverdeling van de electronen) van het O
fragment bepaald. De geldigheid van het analytische model is onderzocht
door eerst model potentiaaloppervlakken en model dipooloppervlakken voor
het dissociërende N2O molecuul te ontwikkelen. Van het “model-N2O” wat
hiermee beschreven wordt, kan worden verwacht dat het analytische model er-
voor opgaat. Vervolgens zijn quantummechanische fotodissociatieberekenin-
gen uitgevoerd, gebruikmakend van vijf adiabatische model potentiaalopper-
vlakken. De verdeling van de N2 rotatietoestanden komt kwalitatief overeen
met de experimentele waarden. We vinden geen overeenstemming tussen de
experimentele en berekende polarisatie van het zuurstofatoom. Een analyse
van het convergentiegedrag van de fotodissociatieberekeningen laat zien dat
de aannamen achter het analytische model slechts ten dele geldig zijn.
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123





Curriculum vitae

Naam Mark Petrus Jacobus van der Loo
Geboortedatum 28 september 1976
Geboorteplaats Deurne, Nederland

2007− Methodoloog, Centraal Bureau voor de Statistiek

2003−2007 Promovendus, Instituut voor Theoretische Chemie,
Radboud Universiteit Nijmegen. In 2005 een verblijf
van 3 maanden aan het Institute for Theoretical Atomic,
Molecular and Optical Physics aan Harvard University.

2000−2003 Informatische Chemie, RU Nijmegen, cum laude.
Hoofdvak: theoretische chemie, Photodissociation and
spectroscopy of OH. Winnaar Unilever research prijs
2003.

1996−2000 HLO-Chemie, Fontys Hogeschool Eindhoven. Stage aan
het YTOL Institute of Technology, Ylivieska Finland:
Analysing rheological data of high solid suspensions. Af-
studeerstage bij NV Organon: Polymorphism of phar-
maceutical compounds.

1992−1996 MLO-Chemie, Technisch Lyceum Einhoven

1988−1992 Jan van Berlaer MAVO, Helmond

125


