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1 Perturbation theory

We start with a derivation of time-dependent perturbation theory employing
Heisenberg’s formalism. In the Heisenberg picture, the evolution of a system
is determined by a unitary time-dependent operator U, obeying the following
equation:

where U denotes the time derivative 8U/dt, and H is the (time-dependent)
Hamiltonian of the system. The evolution operator satisfies the following rela-
tions:

U(t7 tO) = U(tatl)U(tlatO) (2)
Ult,to)! = Ut,to)™ = Ulto,t) (3)
Ulto,to) = Id, (4)

where Id represents the identity operator. In the following, we will not always
write the (¢,t9) dependence of the evolution operator explicitly. Suppose that
the Hamiltonian can be written as the sum of a time-independent and a time-
dependent part:

H=Hy+ V(). (5)
Since Hj is time-independent, the Schrodinger equation for Hy:

dRU O (¢, t0) = HoU© (¢, t), (6)
implies that formally:

U (t,t0) = exp{—iHo(t — to)/h}- (7)
We will now define the following operator:

U(t,to) € UO (8, t)U (1, o). (8)



We will start by investigating this operator, and end up with an expansion that
solves (in principal) the Schrodinger equation for the complete Hamiltonian.
Consider the time derivative of U. Using Leibniz’ product rule, we get

ihU = U 4Oty )
= —H Uty + UOtHU (10)
= UOYH - HJU = UtV (#)U (11)
= V@U. (12)

In the last step we defined V() = U@V (#)U©®. The third step is permitted,
since any operator commutes with it’s exponentiated version: [4,e4] = 0. Eq.
12 may be integrated to yield a solution for U:

t g _ t
ih 9 U(r,to) dr = / V(r)U(r,to) dr, (13)
to 6 tO
which yields:
~ t ~ ~
Ut,tg) =1+ (=ih)~t [ V(1)U(1,t) dr. (14)
to
Using Eq. 2 we find a recursion relation for Eq. 14:

Ul(t,to) = 1+ (ih) ! /th1 " drV (1) + (—ih) "'V (1) V (1)U (12, o). (15)

to to

Applying the same trick to U (72, t9) recursively, and after some rewriting, we
find:

U=1+) U™, (16)
=1

where

00 =iy [an [Cane [T 4@ @) TE. D

to to

Using Eqgs. 2, 3, and 8 it’s easy to find the following equation from Eq. 17:

U=U©® 4+ Z U, (18)
n>1
where
t T1 Tn—1
uvn = (—z'h)_"/ dn d7'2.../ drn
to to to

x UO(, ) (H V(7)) U@ ( n,T,+1)> V(1)U (1, t0). (19)



Note that this expansion is in principal exact, and can be truncated to approx-
imate the complete solution.

Suppose we start with a system in a known state |¢), let it evolve for some
time, and then determine it’s state again. The chance of finding the system in
some final state |f) is given by:

Preilt) = {FIU (¢ o)1) (20)

We now return to the Hamiltonian in Eq. 5. Assuming that the time-dependent
part gives a small contribution, we may approximate Py.;(t) by taking |i) and
| £} from the eigenspace Hg of Hp and truncating the expansion at some level:

(Ut = (FIUO(E,t0)i) (21)
+ (=in)t [ dr (FIUO @, )V (1)U (1, 10) i)
t T1
+ (—Zh) ;‘/to d7'1 o dTQ
x {fIUO )V (1)U (r1, ) [m) m|V (1)U (2, to) |i)

+ higher order.

If we assume that Hy has a pure-point spectrum (which is in general not the
case), then the sum ) |m)(m| = Idy,.

2 Electromagnetism

Here is a short overview of some classical electromagnetism, necessary to un-
derstand the perturbing potential in the next section. There are a number of
unit conventions for the electro magnetic theory. Two well-known systems are
the Gaussian unit system, and the rationalized MKS (Meter Kilogram Second)
system. Throughout this section we will work in rationalized MKS units, since
this facilitates conversion to atomic units. In this unit system we may also apply
the relation:

eopro = 1/ (22)

In the appendix there is a short list of vector identities that will be used and
some conversion factors. Vector fields and quantities are denoted in a bold-face
font, scalar fields are designated with a lower-case Greek letter.

2.1 Maxwell’s equations

The macroscopic Maxwell equations for the free field are given by:

(@) V-D=p b VxE=-B
() V-B=0 (dVxH=J+D, (23)



with
def
D=gE+P €¢E (24)

_ 1 def 3
H= 1B-M < 1B, (25)

where E indicates the electric field, D the electric displacement field and P
the polarization field of the medium. The symbol B indicates the magnetic
field, H the magnetic displacement field, J the current density, and M is the
magnetization of the medium. The definitions in Eqs. 24 and 25 are only valid
for isotropic linear media. From here, we consider the Maxwell equations for
the vacuum, which means p = pp and € = €.

2.2 Gauge invariance

It is possible to derive a unified description for the electric and magnetic fields.
First observe that Eq. 23(¢c) and the vector identity Eq. 87 imply that B may
be written as follows:

B=VxA, (26)

the quantity A is called the vector potential. We can also relate the electric field
to the vector potential:

VXE=-VxA=>Vx(E+A)=0. (27)
Employing Eq. 88 we may write:
E=—-A-V¢. (28)

Where ¢ is called the scalar potential. The negative sign is just a convention.
Furthermore:

1 o .
VxH=_-Vx(VxA) J+eoa(—A—V¢)

V(VA) —=V2A = pod + eopoA — eooV, (29)

where Eq. 89 is employed in the second step on the left hand side. Finally we
rewrite Eq. 29, and combine Eq. 23(a) and 28, to obtain the equations of motion
for ¢ and A:

1 . 1 .
V2A—C—2A—V(VA+C—2¢) = —poJ (30)
VA +V2% = —p/eo. (31)

These coupled equations are completely equivalent with the original Maxwell
equations. The equations can be uncoupled by using the fact that A can be
augmented with the gradient of any differentiable scalar field A without changing



the magnetic field. In fact, the Eqs. 30 and 31 are invariant under the following
simultaneous mappings:

A » A4V (32)
¢ = d— A\ (33)

This freedom allows us to impose restrictions (gauges) to the equations of mo-
tion, in order to decouple Egs. 30 and 31. In (special) relativistic calculations,
the Lorentz condition is imposed:

1.
VA + C—2¢ =0, (34)
this yields the condition that
0 1. 1.
A _— —_ — = A— 0= 35
V(A +V)A) 5 [qﬁ 02)\] \Y C¢ 0, (35)
which implies
1.
V2 — C—2A =0OX=0. (36)

The operator O is called the d’Alambertian'. The equations of motion for A
and ¢ are then reduced to:

OA = —pod (37)
D¢ = —p/eo, (38)
where we used VA = —1/¢? in the second equation. In non-relativistic calcu-

lations (i.e. where the studied objects have low relative velocities) the Coulomb
gauge is practical to use. This gauge results from the condition

VA =0 (39)
which implies that A obeys the Poisson equation:

VX = —VA. (40)
The equations of motion are transformed to the following;:

1_.

OA = —pod+ c—2V¢ (41)

V¢ = —p/e. (42)
Equation 42 has the following general solution:

p(r',t)
t) = d 43
o) = [ FED (43)

So ¢ is just the instantaneous potential at some point in space, caused by the
presence of a charge distribution p. In the following we will work with the
Coulomb gauge.

1Tt might seem inconsistent to use the d’Alambertian on scalar fields and vector fields, but
since the action of [J is unambiguously defined in both cases, the notation is clear.



2.3 Wave equations

In the absence of any charges, the potential ¢ and the current density J are zero
everywhere. The equations of motion for the scalar and vector potential reduce
to the the following:

OA = vz—la—Q A=0 (44)
n c? Ot2 e

This is called a wave equation. Since it is a second order differential equation,
there are two linearly independent solutions, which are in this case given by:

A(r,t) = Agexp{i(k -r — wit)} (45)

Checking the validity of this solution yields the following;:

2
OA(r,t) = [k2 - ‘;’—2] A(r,t) =0, (46)
which implies that
£ k| = :l:%. (47)

The vector k is called the propagation vector. A positive absolute value implies
that the vector field moves forward, a negative absolute value implies a motion in
the opposite direction. Since linear combinations of solutions are also solutions
of the differential equation, it follows from Fourier theory that any function of
the form f(k - r — wt) is a solution to Eq. 44. From here on, we will look at
forward moving waves. The electric and magnetic fields can be retrieved from
A by Egs. 26 and 28.

E(r,t)=—A = iwAgexp{i(k-r—wt)}
= Egexp{i(k-r—wit)} (48)
B(r,t) =VxA = ikxAgexp{i(k-r—wt)}
= Boexp{ik -r—wt)}, (49)

where Eq. 90 was used to derive Eq. 49. It follows from Eq. 49 that the magnetic
field is perpendicular to the plane spanned by k and Ag. The condition VE = 0
implies that Ag -k = 0. Since Eq is parallel to Ay, it is clear that E, B and k
form a mutually orthogonal triad. It also follows that the electric and magnetic
fields oscillate perpendicular to the propagation direction, indicated by k. We
now define the following:

k := kk (50)
EO = Eoé (51)
By := Byb= Bk x @), (52)



where |k| = |&| = [b| = 1. Equation 23(d) can then be written as:

VxE = -B
V x Egexp{i(k -r —wt)} = —%Bo exp{i(k - r —wt)}
ikEo[k x 8] = iwB,[k x &].
it follows that:
By = SEO = %Eo- (53)

2.4 Poynting vector
The energy content of the electro magnetic field at a point in space and time is
given by:
1
u(r,t)zE[E-D+B-H]. (54)

In order to study the change in energy content, carried by a traveling electro
magnetic field, consider the time-derivative of w:

= %[E-D+E-D+B-H+B-H]
= eE-E+lB-B
i
= E-VxH-H-VxE
= V(HxE), (55)

where Eq. 91 was used in the last step. Integrating the energy-change over some
volume in space gives the following:

/dvuz/dUV(HxE)z—]{dsP-f(, (56)
Vv Vv S

where we used Gauss’ theorem in the second step, and defined the Poynting
vector P:

P=ExH. (57)

The interpretation of Eq. 56 is clear: the decrease of energy content in a volume
V equals the energy flux normal to the surface S containing V' (note that this can
only be the direction of unit vector 12) In a general description, both E and H
can be complex. Since the electric and magnetic field are observable quantities,
the convention is to take the real part of the complex functions E(r,t) and
H(r,t). In a measurement, the oscillations will not be observed. The electro



magnetic field intensity I is defined as the cycle-averaged (time-averaged) value
of the Poynting vector:
) t+At .
I=4 / Re(E)xRe(H)-ndt:i(Exﬁ)-f{. (58)
t

The quantity H denotes the complex conjugate of H. The last step is valid for
any two complex quantities having a exp{—iwt}-dependence. This is called the
cycle average theorem, which is easy to prove by filling in the expressions for E
and H and integrating over time. From Eq. 58 we obtain the following explicit
formula:

1 —

I = —(ExB) -k
5 MO( )
= %(ion) - (ikAg)eiller—witgillker—w)t(g » [k x &]) - k
0
wk o~ ~  €Ciwk 1 1
= Z—IUOA(Q)k . k = 2 Ag = §C€0(JJQA% = §C€0Eg (59)
where A() = |A0|

3 2-photon transitions

In perturbation theory, the interaction of a molecule with electro magnetic ra-
diation is described by augmenting the molecular Hamiltonian Hy with a radi-
ation term coupling electrons to the electro magnetic field. The probability for
2-photon absorption is given by the second-order perturbation formula:

Prei(t) = {FIUP (2, o)), (60)

where U™ is given by Eq. 19. This yields explicitly:

(flU®iy = (=in™) / / dridry (fIUQ )V () U (71, 7)|m)
™ty to
x  (m|V (1)U (72, 10)]i) (61)

If we disregard the magnetic coupling between electrons and the magnetic field,
the potential operator V(t) coupling the electrons to the electric field is given
by:

Vit) = —eE-r= %A(I‘, t)
= —%eoneXp{i(k-r—wt)}é-r
r  —iewAgexp{—iwt}é-r =V, exp{—iwt}, (62)

where r represents all electronic coordinates, and the factor 1/2 was inserted
to ensure that |Re(E)| = |A|. The approximation k - r & 0 is valid when the



molecular dimensions are smaller than the wavelength of the radiation. In a
typical experiment wavelengths in the order of 102 nm are used, which justifies
the assumption for small molecules. Plugging the potential into Eq. 61, and
using Eq. 7 yields the following:

(U (¢, t0)li) = R~ 2Zexp{ i(wyt)} exp{iwito }(f[Volm){m|Vo|i)

t 11
X //dTlde exp{i(wy —w)m + en —i(T1 — To)wm — i(w; + w)T2 + €12} (63)
to to

where the factor € was introduced to converge the integral as ¢ty approaches —oo.
At the end we let € - 0. We also introduced the notation w, = E,/h. The
double integral can readily be worked out, this yields the following;:

(FIUP @iy = > exp{—iwst} exp{iwito}(f|Volm)(m|Vo|i)

exp{(iwy — iw — iw; + 2€)t}
(W — wi — w —i€)(wy — 2w — w; — 2i€)

X
This yields for the transition probability:

exp{—i(2w — w; + ie)t} |
(wi — wys + 2w + d€)

(f1Vo|m){m|Voli)
— Wi — W, + w + i€/2

(f[Vo|m)(m|Vo i)
- Wi — W, + w + i€/2

Pt) = h*

exp{2et}

= p*
(wi —wyp + 2w)? + €2

(65)

For this expression, we used that |exp{i¢}|> = 1, and we let ¢ — 2¢. The
transition rate R is equal to the time-derivative of the absorption probability

'P(t):

2e exp{2et}
(wi —wy + 2w)? + €2

) (fIVo|m){m| Vi)

>(t) =h?
P®) mwi—wm+w+ie/2

(66)

for small €, the numerator in the second term approaches 2¢. Letting € — 0
yields a representation for the Dirac delta-function:

2¢

So we obtain:

R=2rh""

5 {4 Valm) o Vo) ’

p— X O(w; —wy + 2w) (68)

m

From Eq. 62 we obtain the expression for Vj:

Vo= —tewAge-r. (69)



plugging this into Eq. 68 yields the following:

2
2metw?t (f|é - r|m)(m|é - r|i)
= Al ; — 2
R 160t 0 Z Wi — Wm +w X (Wi —wy +2w)
2
4 A A .
met o |\ (fle-xm)(m|é - rli)
_ ;- 2).
23 Z P——— X d(w; — wy + 2w) (70)

Using the expression for the fine-structure constant a:

1 €2
o= —
4meg he’

we obtain the following for the transition rate:

5 (e -rlm)mle i ’

R = (2n)3a*h21?
Wi — Wm +w

X O(w; —wy +2w).  (72)

m

We can check the units for this equation: since the quantity P should be dimen-
sionless, R should have dimension s~!. We will denote the unit of a quantity
with square brackets, e.g. for mass M in grams we write [M] = g. In the MKS
unit system we have:

[ = 1 (73)
A = J-s (74)
[I] = J/(cm’s) (75)
[(fle-r[m)] = cm (76)
W = s (77)

The intensity is defined as the cycle-average of the Pointing vector, who’s di-
mension is energy/areaxtime, so the dimension of I is the same. The dimension
of the Dirac delta-function can be derived from it’s definition (Eq. 67), and the
notion that [¢] = ¢~ !:

[0(w; —wy + 2w)] = ET =s. (78)

We thus find for [R]:

. . 2
[R] = 1312 - (Js) 2 - (J/(cms))? - (cr‘;jm) s=g L (79)
The two-photon generalized cross section o) is defined by:
7\2
@[ —
R=oc (hw) , (80)
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The units for the cross section become:

The equation for the two-photon cross section now reads:

§f WrlAfom) o A1) [ 5

Wi + W — W

2m)3a?w?

et

o (w) = {

wi —wyp +2w).  (82)

To compare the cross section with experiments, this formula can be treated in

two ways. The first is to compute the two-photon integrated line cross section
I?:

IO(f i) = dw 0@ (w)

line
2‘[ (¢ | il tom) (mlitli) |

(27)3a?w?
Wi +w—wpy

. (83)

where the integration runs over the line width of the electro magnetic field,
which is here assumed to be a block function. The unit [I®®)] = cm?, and
w = %(wf — w;). This applies if the line width of the electro magnetic field is
(much) larger than the bandwidth of the excited state. The second method can
be used in the case where the bandwidth of the transition is larger than the line
width of the electro magnetic field. The delta function is then replaced by it’s
original Lorentzian form:

€
(wi —wy +2w)2 + €2

0(w; —wy + 2w) — % (84)

This is interpreted as the line width function for the excited state. In most cases
we can set

€=1/27g, (85)

where 7g is the radiative lifetime of the upper state. If the electro magnetic
field is tuned to the maximum signal, we have once again w = 1(w; — w;), and
we get for the cross section:

?f (sl m) ($m|les) [* 2R

Wi + W — W ™

(27)3a%w?

el

o® — (86)

which has units as in Eq. (81). Finally we note that for n-photon processes, the
experimentally observed cross section can be enhanced by a factor n!, when a
non-coherent electro magnetic field is used.
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A Vector identities

V-(VxA) = 0 (87)
VxVé = 0 (88)
Vx(VA) = V(V-A)-V?A (89)
Vx(pA) = (V-¢)A+¢V x A (90)
V-(AxB) = B-VxA-A-VxB (91)
AxB = -BxA (92)

B Units

Fundamental units in the atomic unit system. All quantities in the following
table are dimensionless and equal 1.

Constant Symbol
rest mass of the electron Me
elementary charge e
Planck’s constant divided by 27 h=h/2m

47 times the permittivity of free space 4meg

Here are some derived units:

Constant Symbol Recommended value (NIST)
length, Bohr ap = 4megh? /mee*  0.529 177 2083(19) x10719 m
energy, Hartree Ey, = h?/mead 4.359 743 81(34) x10~8 J
time 10 = I/ Ep, 2.418 884 326 5 x1017 s
fine-structure constant 1/4meq x €2 /hc 7.297 352 533(27)x 103
velocity of light c=al 1.370 359 892x10? a.u.

Here are some conversion factors between the gaussian and the MKSA system:

Quantity Gaussian MKSA
Velocity of light c (po€o) 172
Electric field E VireE
Displacement D 47 /€D
Charge Density p 1/\/Ameop
Magnetic induction B 47/ pueB
Magnetization M o /47 M
Dielectric constant € €/€g
Permeability 1 W/ o

12
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